Flow Equalization Basins: Uses and Design Variations

WaterCon 2012
March 19th, 2012
Flow Equalization Basins (FEB)

- Use at Wastewater Treatment Plants
- Lining options (geomembrane or concrete)
- Side-line vs. In-line FEBs
- Related equipment
Flow Equalization

- Process of reducing changes in flow rate through a system
- Diurnal changes common in water and wastewater treatment facilities
- Fluctuations affect performance

Source: Greater Wellington Regional Council
Purpose of FEBs

- **Benefits**
 - Cost Effective
 - Assists in providing constant flow rates to plants
 - Easy maintenance
 - Flexibility in materials and design
 - Can eliminate unnecessary overflows from large rain events

Source: Hickory, NC

Source: Greensburg, IN

Source: Inland Empire Utility Agency
Uses of FEBs

- **Wastewater Treatment Plants**
 - Located upstream
 - Accounts for varied plant influent
 - Component in providing near steady influent flow rate
 - Assists during wet weather events

- **Water Treatment Plants**
 - Located downstream
 - Accounts for fluctuation in demand throughout the day
 - Treatment plant allowed to operate at steady, average flow
Lining Options

- Various Options for Liner
 - Soil Cement
 - Concrete
 - Geomembrane
 - Hybrid

- Additional Considerations
 - Access
 - Cleaning Techniques
 - Filling/Drainage
Concrete vs. Geomembrane

Concrete
- Advantages
 - Long lifetime
 - Durability
 - Works for various basin configurations
- Disadvantages
 - Cost
 - Construction
 - Material

Geomembrane
- Advantages
 - Multitude of options
 - Textured vs. Smooth
 - Lower cost
 - Easier to replace
Geomembrane Liner

- Geomembrane
 - Disadvantages
 - Potential for damage
 - Puncture of liner
 - Tearing of liner at pressure points
 - Wind getting beneath liner
 - Lifespan

Source: Google Maps
Cleaning Techniques

- **Water Cannons**
 - Permanent options
 - Designed for optimal coverage
 - Cleaning occurs on the upper bank of the basins

- **Hydrants**
 - Flexibility
 - Use of fire hoses
 - May require entering basins to clean

Source: Elkhart Brass
Types of FEBs

- **In-line:**
 - Used following grit and screening to regulate diurnal flows
 - All flow passes through basins

- **Side-line:**
 - Used to address overloaded conveyance lines
 - Address large wet weather events
 - Used to dampen seasonal flow variations
Types of FEBs

- **Side-line:**
 - Portion of flow pass through flow equalization basins
 - Accepts flow that cannot be handled by treatment plant
 - Minimizes pumping requirements
Types of FEBs

- **In-line:**
 - All flow passes through flow equalization basins
 - Concentration dampening
 - Mass flow dampening
Mixing

- Mixing and aeration required
 - Eliminates excessive solids deposition
 - Makes for easier drainage of the basins
 - Reduces clogging in discharge piping
 - Reduces material left in the basin following drainage
Aerators

- **Mechanical Aerators**
 - Mixing and aeration due to oxygen transfer capabilities
 - Baffling requirements may be necessary for proper mixing

- **Diffused Aerators**
 - Coarse or intermediate diffusers
 - Smaller diffusers lend themselves to inorganic deposits
Questions and Discussion