Building Sustainable Bridges

What’s Important

Bill McEleny
Director
National Steel Bridge Alliance
ENVIRONMENTALISTS
Sustainable Development: “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”
Environmental Impact

- Global warming potential
 - (kg CO2 equivalent)
- Acidification potential
 - (mol H+ equivalent – air pollutants into acids)
- Eutrophication potential
 - (kg Nitrogen equivalent)
- Smog potential
 - (kg Nitrous Oxide equivalent)
- Non-renewable energy primary demand
 - (Mega-Joules)

A rational, quantified approach to determining specific environmental impacts (Webster 2004)
LCA Tools

ATHENA Impact *Estimator* and EcoCalculator

BEES – Building for Environmental and Economic Sustainability (National Institute of Standards and Technology)

Carnegie Mellon University’s Green Design Institute’s Economic Input-Output Life-Cycle Analysis Tool

GaBi Life Cycle Engineering Software and SoFi Software (Five Winds International and PE Americas)

U.S. LCI Database (National Renewable Energy Laboratory)

World Steel Association database
LCA Carbon Footprint Numbers for Steel

<table>
<thead>
<tr>
<th>Source</th>
<th>Carbon Footprint (t/ton or CO₂/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEES/NIST</td>
<td>2.4 tons CO₂/ton</td>
</tr>
<tr>
<td>AISI average</td>
<td>1.4 t/t</td>
</tr>
<tr>
<td>World Steel</td>
<td>0.937 t/t</td>
</tr>
<tr>
<td>ATHENA</td>
<td>0.936 t/t</td>
</tr>
<tr>
<td>Five Winds</td>
<td>0.895 t/t</td>
</tr>
<tr>
<td>BCSA</td>
<td>0.762 t/t</td>
</tr>
<tr>
<td>AISC</td>
<td>0.73 t/t</td>
</tr>
<tr>
<td>SMA</td>
<td>0.62 t/t</td>
</tr>
</tbody>
</table>

We need better numbers!

Estimates are not exact
Compare - Two Buildings

• **Steel**
 Hospital Medical Office Building, Omaha
 151,910 sq. ft, five stories
 1,211 tons of steel and 5,814 cubic yards of concrete

• **Concrete**
 University Medical Research Center, Omaha
 280,000 sq. ft, eight stories
 1,941 tons of steel and 15,650 cubic yards of concrete
Compare - Two Buildings

- Included
 Material production, fabrication, construction, end-of-life deconstruction/landfill for the structural system

- Functional Unit
 One square foot of building space

- Criteria
 Global warming potential
 Acidification potential
 Eutrophication potential
 Smog potential
 Non-renewable energy primary demand

- Data
 GaBi LCI Database (Five Winds)
 Site-specific production data representative of current construction techniques
We need better numbers! Estimates are not exact.
Steel Construction is ‘Better’ By…

- Global warming potential 9%
- Acidification potential 8%
- Eutrophication potential 9%
- Smog potential 14%
- Non-renewable energy primary demand -1%
now

• 0.5 labor hours/ton
• 67% reduction in energy use (since 1980)
• 47% reduction in carbon footprint (since 1990); on track for 10% more by 2012
• 45% reduction in greenhouse gas emissions (since 1975)
• 40% higher strength (since 1990)
• EPA best performance recognition
SUSTAINABLE MATERIAL
Economic & Social Impact

Site Selection
existing routes, no virgin sites, no historic sites, footing & pier locations

Materials & Resources
reduce, reuse, recycle, recyclable; future use, demo/salvage, water use

Traffic / Alternative Transportation
transitways, HOV, pedestrians, bicycle, lane adaptability

Construction Activities
construction debris, erosion control, on-site energy use
electric arc furnace vs. basic oxygen furnace
RECYCLED CONTENT

93.3%
Highest recycled content of any material = 93.3%

Highest recycling rate of any material = 98%

Significant potential for material reuse

Not down-cycled or just recycled, but multi-cycled with no loss of functionality

A true cradle-to-cradle material!
Superior water resource management of a closed loop system with no external discharges
(requiring 70 gallons make-up water / ton of steel produced)
WATER USE

1 ton of steel = 70 gallons

1 lb. of steak = 1,857 gallons

1 glass of beer = 20 gallons
prefabricated bridges
JOB SITE IMPACT

prefabricated bridges
500 mile radius
LOCAL/REGIONAL SOURCES?
Transportation Options

Semi = 1 ton @ 150 miles/gallon
Rail = 1 ton @ 450 miles/gallon
Barge = 1 ton @ 675 miles/gallon
no touch / light touch
Mt. Si, King County, WA
no touch / light touch
FUTURE USE

re-use / modify / re-purpose
Cornell University, Ithaca, NY
reduce (thru long life)
127 Steel ‘Centurions’
Domestic wind power grew by 39% in 2009; it’s nearly 2% of total power use.

Domestic solar power has increased by 40% per year for last eight years.
AISC Member Fabricator
Hamilton Construction
Springfield, Oregon

74.3 KW Solar Electric System

Expected cost savings:
• $4,638 in first year
• $280,400 (with a 3% annual energy rate inflation) lifetime savings

Environmental savings:
• 2,000 tons of CO₂
• 6,000 trees planted
• 209,000 gallons of gasoline
WHAT CAN I DO?

Recognize sustainable design and construction is a growing market and movement

Engage in collaborative design with the full project supply chain

Avoid the “popular” issues – be analytical

Support the development of a balanced, consensus based standard for all construction materials in high-performance, green bridges

Operate in a sustainable manner

turn off the lights!
• Bill McEleny
 Director
 mceleny@steelbridges.org
 401.943.5660

• www.steelbridges.org