MICROBIAL CONTROL DURING THE WINEMAKING PROCESS

Dr. Nichola Hall
MN Grape Growers Association
2017 Cool Climate Conference
February 16th 2017
MICROFLORA ASSOCIATED WITH WINE PRODUCTION STAGES

<table>
<thead>
<tr>
<th>GRAPE</th>
<th>FERMENTATION</th>
<th>AGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-fermentative yeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• AAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Molds</td>
<td>• Fermentative yeast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-Fermentative yeast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fermentative yeast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AAB</td>
<td></td>
</tr>
</tbody>
</table>
RELATIONSHIP BETWEEN GRAPES AND WINE

JUICE CHEMISTRY

WINE CHEMISTRY

WINE MICROBIOLOGY

POPULATION WILL VARY DEPENDING UPON: VINTAGE, VINEYARD, CHEMISTRY (pH), SANITARY STATUS OF FRUIT
GRAPE MICROFLORA - WHY SHOULD WE CARE?

• Nutrient depletion
 – Vitamins and minerals can be consumed in the first few hours

• Production of microbial inhibitors

• Production of negative sensory compounds

• Control over fermentation process and wine style
CONTROL OF GRAPE MICROFLORA

• Once identified we can select the most appropriate control method
 – Biological
 • Organism introduction
 – Organism choice - Yeast and/or Bacteria
 » Inoculation time and rate, handling and acclimatization
 » Paying attention to the yeast lag phase specifics
 – Chemical
 • SO$_2$, Lysozyme, Tartaric Acid
 – Physical/Environmental
 • Settling, temperature management, hygiene
Microbial Control of the Fermentation Process

Alcoholic Fermentation
- Yeast strain selection
- Yeast preparation
 - Time, temperature and acclimatization
- Yeast addition
- Yeast nutrition, incl. Oxygen
 - Protection
 - Nourishment
- Temperature control
- Presence of inhibitors
 - VA, Ethanol, SMCFA

MaloLactic Fermentation
- Bacteria strain selection
- Bacteria preparation
 - Timing, temperature
- Bacteria nutrition
- Bacteria addition
- Temperature management
- Chemical parameters
 - pH, FSO$_2$ and TSO$_2$, Ethanol
- Presence of inhibitors
 - High lactic acid, polyphenolics, pesticide residues, SMCFA
MICROBIAL CONTROL OF THE FERMENTATION PROCESS

Alcoholic Fermentation
- Yeast strain selection
- Yeast preparation
 - Time, temperature, acclimatization
- Yeast addition
- Yeast nutrition, incl. Oxygen
 - Protection
 - Nourishment
- Temperature control
- Presence of inhibitors
 - VA, Ethanol, SMCFA

MaloLactic Fermentation
- Bacteria strain selection
- Bacteria preparation
 - Timing, temperature
- Bacteria nutrition
- Bacteria addition
- Temperature management
- Chemical parameters
 - pH, FSO₂, TSO₂
 - Ethanol
- Presence of inhibitors
 - High lactic acid, polyphenolics, pesticide residues, SMCFA

GOOD FERMENTATION MANAGEMENT
AVOID MICROBIAL VOIDS

END OF ALF:
G:F, Ethanol, pH, Malic acid, VA

END OF MLF:
Malic acid, VA, pH, FSO2 (MSO2), TSO2
MICROBIAL FLORA DURING AGING

Should have none!
MICROBIAL CONTROL DURING AGING

- Hygiene
- Minimize oxygen
- Manage pH/\(SO_2\) levels
- Manage temperature
- Prophylactic or treatment dosage of Lysozyme and/or Chitosan/Chitin-Glucan
- Taste wine
- INTERVENE EARLY!

RECOMMENDED ANALYSIS:
Baseline microbiology, VA, FSO\(_2\), TSO\(_2\) and MSO\(_2\)
CONTROL IS THE BEST MEANS TO AVOID SPOILAGE!

And, spoilage occurs when we don’t or can’t exert control!
MICROBIAL SPOILAGE- A DEFINITION

Spoilage is considered to have occurred if the growth or metabolism of a microorganism imparts an off-aroma or mouthfeel character to juice or wine or, there is a change in the physical appearance.
MICROBIAL CONTROL

Environmental

- Hygiene
- Temperature
- Humidity
- Controlled Fermentations
- Nutrients deserts

Chemical

- pH
- MSO$_2$
- Chitosan/Chitin-Glucan
- Lysozyme
- DMDC (Velcorin)
- Sorbic Acid
- CO$_2$
- Alcohol

Physical

- Filtration
- Thermal
- UV
MICROBIAL CONTROL

Environmental
- Hygiene
- Temperature
- Humidity
- Controlled Fermentations
- Nutrients deserts

Chemical
- pH
- MSO₂
- Chitosan/C-G
- Lysozyme
- DMDC (Velcorin)
- Sorbic Acid
- CO₂
- Alcohol

Physical
- Filtration
- Thermal
- UV
SULFUR DIOXIDE

Total SO$_2$

Free

- (M)SO$_2$
- Bisulfite HSO$_3^-$
- Sulfite SO$_3^-$

Bound

- Bound to sugars, phenolics, aldehydes, etc.
SO$_2$ AS AN ANTI-MICROBIAL

![Graph showing the percent in given form (%) of SO$_2$, HSO$_3^-$, and SO$_3^{2-}$ versus pH.](image)
SO₂ enters the cell (as it doesn’t have a charge) and undergoes a rapid pH-driven dissociation at cytoplasmic pH, yielding sulfite and bisulfite. These molecules bind with essential proteins leading to cellular death.

SO₂ is either Microstatic or microcidal depending on concentration.
RELATIONSHIP BETWEEN pH and SO$_2$

<table>
<thead>
<tr>
<th>pH of wine</th>
<th>% as Molecular SO$_2$</th>
<th>Free SO$_2$ concentration (ppm) for 0.8 ppm Molecular SO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>6.06</td>
<td>14</td>
</tr>
<tr>
<td>3.10</td>
<td>4.88</td>
<td>18</td>
</tr>
<tr>
<td>3.20</td>
<td>3.91</td>
<td>22</td>
</tr>
<tr>
<td>3.30</td>
<td>3.13</td>
<td>28</td>
</tr>
<tr>
<td>3.40</td>
<td>2.51</td>
<td>35</td>
</tr>
<tr>
<td>3.50</td>
<td>2.00</td>
<td>44</td>
</tr>
<tr>
<td>3.60</td>
<td>1.60</td>
<td>55</td>
</tr>
<tr>
<td>3.70</td>
<td>1.27</td>
<td>69</td>
</tr>
<tr>
<td>3.80</td>
<td>1.01</td>
<td>87</td>
</tr>
<tr>
<td>3.90</td>
<td>0.81</td>
<td>109</td>
</tr>
<tr>
<td>4.00</td>
<td>0.64</td>
<td>125</td>
</tr>
</tbody>
</table>
ADJUVANTS TO SO$_2$

• LYSOZYME
 – Gram positive (Lactic acid) bacteria
 • Initial fining effect then lysis of LAB cell walls

• Chitosan/Chitin-Glucan
 – Brettanomyces, Lactic Acid and Acetic acid bacteria
 • Fining then lysis of cell walls/ membranes of cells

• DMDC
 – Most effective against Yeast

• Sorbic Acid (Potassium Sorbate)
 – Yeast
 • pH and ethanol influences it fungicidal nature
HYGIENE IS A MEANS OF MICROBIAL CONTROL, PRODUCT INTEGRITY, EQUIPMENT MAINTENANCE, ENVIRONMENT(AL) MANAGEMENT AND CONSERVATION!
5S PRINCIPLE

• 5S methodologies
 – Sort (Seiri)
 • Return, retain, trash
 – Straighten (Seiton)
 • Organize and arrange
 – Shine (Seiso)
 • Systematic cleaning
 – Standardize (Seiketsu)
 • Uniform procedures and operations
 – Sustain (Shitsuke)
 • Adhere to
CLEANING... IS A PROCESS!
HYGIENE STEPS

- CLEANING CAN BE:
 - RINSE
 - WASH
 - RINSE
 - NEUTRALIZATION STEP
 - SANITATION
 - POTENTIAL RINSE STEP

- CLEANING CAN BE:
 - RINSE
 - WASH
 - SINGLE PASS RINSE
 - SANITATION
EFFICIENCY IS ACHIEVED BY:

WATCH RULE

Balanced interactions for optimized efficiencies!
WATER

- Water quality
- Water quantity
 - 10% of volume

Can your process water be re-used?
(MECHANICAL) Action

• Key Factor for success, especially in difficult to reach areas

• Forces the contaminants off the surface
 – Used in conjunction with the dissolving properties of the cleaning solution
 – Reactions are often equilibrium controlled, constant circulation is required

• Hoses and piping
 – Turbulent flow
 – Flow rate
 • 5-7’ / sec
 – 1.5” hoses = 24-34 gpm
 – 2.5” hoses = 69-96 gpm
 • Movement is upstream, not downstream
(MECHANICAL) **Action**

- **Tank surface flow rates**
 - 27L (7.1 gallons)/min/m circulated - light soil
 - 30L - medium soil
 - 32L - heavy soil

Rates sufficient for tank surface **flow and volume** to enable cleaning to occur!
(CONTACT) **TIME**

- Cleaners do not work instantly
 - Takes time to penetrate the soil

- Consider
 - How cleaner is being applied
 - Spraying, soaking, foam, gels
CONCENTRATION

• Amount used dependent upon:
 – Water quality and quantity
 – Soil quantity
 – Soil quality
 • Damp, dried or baked
 – Temperature of cleaning water

If a little works- A lot is *not* better!
IN PRACTICE - HOW MUCH CLEANER DO YOU NEED?

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>EVALUATIONS</th>
<th>MY SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 POINT</td>
<td>2 POINTS</td>
</tr>
<tr>
<td>Level of soil</td>
<td>Light</td>
<td>Moderate</td>
</tr>
<tr>
<td>Water hardness</td>
<td>Soft-Moderate</td>
<td>Hard</td>
</tr>
<tr>
<td>Water temperature</td>
<td>Recommended Range</td>
<td>10°F cooler than recommended</td>
</tr>
<tr>
<td>Interpretation of score</td>
<td>3 points Use low end of recommended range</td>
<td>4-6 points Use medium level of recommended range</td>
</tr>
</tbody>
</table>

Score card was designed for AiRD Products.
HEAT (TEMPERATURE)

• Each detergent has an optimum temperature at which it works best
 – Too cool
 • Ineffective
 – Too hot
 • Denature soil and without surfactants bake it on...

• Significant effect on aqueous cleaning success
 – Load carrying capacity is higher in warmer water
 – Increasing above ambient increases efficiency
 – Reduces contact (reaction) time
CONSIDERATIONS FOR CLEANER SELECTION & CONCENTRATION

• Type of soil present
 – Visible, invisible
 – Loose, baked, stain, biofilm

• Amount of soil present
 – Low, moderate, heavy

• Material composition
 – SS, wood, PP, ?
IDENTIFICATION OF SOILS
PROPERTIES

Cleaning requirements

For your operation how clean is clean enough?

Physically clean
Chemically clean
Microbiologically clean
A WORD OF CAUTION

- CAUSTICS

- Highly corrosive and reactive
- Exothermic reactions
- Increases surface tension
- Hard water + heat = scale
- Denatures and chars soils
- Potentially redeposits it
BUILT CLEANERS

• Should be suitable for the job
• Should be safe
• Respectful

• Active cleaning agent
• Adjuvants
 – Surfactants
 – Chelation aids
 – Rinse aids
CLEANING IS A PHYSICO-CHEMICAL PROCESS!
EFFICIENCY IS ACHIEVED BY:

WATCH RULE

Balanced interactions for optimized efficiencies!
PRIOR TO CLEANING

• The first stage of the cycle is always a warm water rinse as soon as equipment has been emptied
 – Deals with majority of water soluble materials
 – ~145°F
 • By doing a good job with this rinse you can cut back on the level of detergent you are using

There is a stage before this initial rinse and that is the dry cleaning phase…sweep, shovel, etc to remove as much of the visible solids as possible.
A CLEAN TANK
EQUIPMENT
THE 5S PRINCIPLE...
CLEANING EQUIPMENT

• Cleaning equipment

How often do you clean your cleaning equipment?

– PIG’s
5S PRINCIPLE IN ACTION
Gordon Taylor, DavenLore
WE ARE NOT DONE YET...

• Clean before use and after

• No ideal cleaner
 – This is why we rotate different cleaners in for different jobs
 • Cleaner choices should still be appropriate

• RINSE
 – Removes residual cleaner and prepares for sanitation
SANITATION

• Generally with chemicals or heat
 – Other industries: UV or radiation

• Reduction of non-pathogenic, vegetative cells on clean surfaces to 99.999%

• Complies with FDA and EPA
 – FDA
 • GMP
 – EPA
 • ...

SCOTT LABORATORIES
WHY DOES THE EPA GET INVOLVED?

• 4 acts that influence winery operations
 – Water pollution control act, Clean air act, Resource conservation and recovery act and Federal Insecticide, Fungicide and Rodenticide act (FIFRA)
 • FIFRA deals with pesticides
 – Sanitation aids are classes as pesticides due to their anti-microbial nature
 • Cleaners do have anti-microbial activity, but that is not their main function
HEAT

• Food grade!
 – Penetrates well, kills most microorganisms, penetrates irregular surfaces, suitable for CIP and relatively inexpensive (once set-up), non-toxic
 – Bake on residues (leading to biofilm formation), may form scale, inappropriate for general use, scalding hazard, contact time sensitive, must be generated (energy intensive process)

<table>
<thead>
<tr>
<th>TEMPERATURE (°F/C)</th>
<th>TIME (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200/93</td>
<td>20</td>
</tr>
<tr>
<td>180/82</td>
<td>30</td>
</tr>
<tr>
<td>160/71</td>
<td>40</td>
</tr>
<tr>
<td>140/60</td>
<td>60</td>
</tr>
</tbody>
</table>
CHEMICAL LABELS

Product must be used in accordance with approval
CHOOSING SANITIZERS

<table>
<thead>
<tr>
<th>TYPE OF SANITIZER</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Iodine | Broad spectrum
Effective at low temp
Inexpensive
Does not leave film
Test strips available | May corrode metal and weaken rubber
Unstable, dissipates quickly
Narrow pH range (acidify)
Sensitive to organic load
Stains
Irritant |
| QUAT’S | Non-corrosive
Residual activity (if not rinsed)
Can be applied as a foam
Test strips available | Inactivated by most detergents
Inactivated by hard water
Not broad spectrum
Effectiveness varies with formulation |
| Ozone | Strong oxidizer
Broad spectrum
Breakdown products friendly | Expensive and must be generated
Unstable and cannot be stored
May corrode some materials
Inactivated by organic materials |
CHOOSING SANITIZERS

<table>
<thead>
<tr>
<th>TYPE OF SANITIZER</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| CHLORINE DIOXIDE | Broad spectrum
Strong oxidizer
Less corrosive than Cl
Less effected by organic residue
Generate on site from packets
No free Cl ion (TCA) | Unstable and cannot be stored
Worker safety issues via generation
High generator costs |
| PEROXY COMPOUNDS | Broad spectrum
Good for (bacterial) biofilms
Stable
Effective at low temperature
Breakdown | Expensive
Inactivated by some metals
May corrode some metals
Product?? |
| SULFUR DIOXIDE | Inexpensive
Fairly effective | Irritant
Registered for use |
DEVELOPING PROCEDURES

• Set up a schedule
• Assign tasks
• Procedure
 – When C&S should be conducted
 – What C&S chemicals are to be used
 – How the solutions should be prepared
 – How are they applied
 – What is the correct sequence of use
 – By whom
• MONITOR & DOCUMENT!
EXAMPLE- SSOP

- Wearing proper PPE
- Measure out X gallons of X°F potable water into clean non-reactive container
- Measure out X ounces of X brand cleaning solution
- Carefully mix to ensure homogenous solution
- Check concentration is within range (state range)
HEAVY TARTRATED TANKS

1. Circulate warm water (104-140°F) for 10 mins.
2. Drain solution from tank.
3. Mix 2% solution of Cleanskin®-K in chemical mixing drum in warm water (104-140°F).
4. Remove door seal and clean door seal in Cleanskin®-K solution with stiff brush.
5. Circulate solution for 15 mins through spray ball.
6. Lower spray ball in the tank to clean around door - circulate for 15 mins.
7. Inspect tank - repeat steps five and six with new solution if required.
8. Drain solution when tank is clean.
9. Refit door seal.
10. Single pass water rinse.
OVERVIEW

• Keep abreast of your wines
 – Know their chemistry and have baselines
 – Know the risks associated with the different organisms
 • Exploit their weaknesses!

• Have procedures and protocols

• Follow WATCH rules

• Use winery specific chemicals for wine based soils and winery equipment
THANK YOU

Questions

Nicholah@Scottlab.com
Katiec@Scottlab.com