Best Practices for Wine Analysis
CCC February 16, 2017

University of Wisconsin
Associate Outreach Specialist
Nick Smith
nsmith35@wisc.edu
Winery Analysis: Today’s Topics

- Advantages of an in-house laboratory
- Laboratory needs assessment
- Techniques and recommendations for optimal results
- Laboratory decisions for the commercial winery

http://www.chaikenvineyards.com
Session Expectations

- What are your expectations?
- Any specific questions?
- Where should we focus?
Value of the Laboratory

- No substitute for laboratory results and information
- Agricultural products vary greatly from season to season
- Wineries producing sub-par products often lack analytical capacity and capabilities
 - Commercial wine production is not large scale home winemaking
Advantages of a Laboratory

- Timely results
 - Improves efficiency of winery operations
- Objective insight into wine quality
- Improved quality
 - Quality control
- More information
 - Provides historical context to assist with future decisions
 - Greater understanding of why something works or doesn’t
- Problem solving
Winery Analysis: Today’s Topics

- Advantages of an in-house laboratory
- Laboratory needs assessment
- Techniques and recommendations for optimal results
- Laboratory decisions for the commercial winery

http://www.chaikenvineyards.com
Laboratory Needs Assessment

- When designing a laboratory, what do you need to consider:
 - Budget
 - Time
 - Expertise and skill
 - Size of production and number of wines
Budget

Fast

Cheap

Quality
Winemaker Checklist

- **Budget**
 - How much do you plan to invest in laboratory equipment?
 - Wide assortment of equipment available
 - Which piece of equipment is right for you?
 - Budget
 - Time
 - Expertise
 - Volume of analysis
Budget

- The lower your budget:
 - The more time and effort you will need to dedicate to analysis
 - Manual vs. automated
 - Increased use of outside services
 - Less information to work with
 - Riskier winemaking
 - Lower quality
Time

- An undervalued resource
- How much do you have available and are willing to commit to laboratory work?
- When time is tight and you have to make a decision on what gets done, how will you prioritize lab analysis?
- What areas of wine production do you tend to focus on?
Time

- When time is limited:
 - Consider more automated solutions
 - Hire someone to do the analysis
 - Schedule time to perform analysis
 - Use an outside laboratory
Expertise

- What is your background in science and chemistry?
- What is your interest level in learning about techniques and analytical test?
- How enjoyable do you find analytical analysis?
- Are you intimidated by the analysis?
Size of Production

- How large is your operation, and how many wines do you plan to produce?
 - Understand your analytical demands
 - Volume and quality
- Large volumes
 - Expensive if things go wrong
- Large product line
 - The more products, the more analysis
Size of Production

- The large your production, or the greater the number of products, the greater the need for high quality and easy to produce analysis
Winery Analysis: Today’s Topics

- Advantages of an in-house laboratory
- Laboratory needs assessment
- Techniques and recommendations for optimal results
- Laboratory decisions for the commercial winery

http://www.chaikenvineyards.com
Techniques for Quality Results

- Accuracy and precision
- Volumetric analysis/methods
- Reagent standardization
- QC methods for analysis
Accuracy and Precision

- Low accuracy, Low precision
- Low accuracy, High precision
- High accuracy, Low precision
- High accuracy, High precision
Volumetric Techniques

- Use volumetric glassware
 - Often calibrated to a specific volume
 - Pipets
 - Graduated cylinders
 - Flasks
 - Burets
- Available in different classes
 - Class A vs Class B
- A small error in measurement can magnify to large error at the commercial scale
- Balance (0.1 to 0.01 g)
Volumetric Pipettes

- Required for accurate dilutions and measurements
 - Stock chemicals
Volumetric Pipette

- TC vs TD

Class A pipette is accurate to within +/- 0.020 mL.

TD stands for “To Deliver.” That means by letting the liquid simply drain out, it will deliver 10mL in 25 seconds.

20°C (68°F) is the temperature where most accurate.
Volumetric Flasks

Setting the meniscus to the volume mark. Side view.
W/W vs W/V vs V/V

- **W/W**
 - Weight per Weight
 - Mass fraction
 - Brix

- **W/V**
 - Mass per unit volume
 - Titratable acidity (g/L)
 - Stock solutions
 - 5%: 5 grams of product, brought up to 100 mL of total solution
 - Not 5 grams plus 100 mL of solution

- **V/V**
 - ABV
Burettes

- High visible gradation lines
- Class A and class B
- Different sizes
 - 25 ml and a 10 ml
Standardization

- Process of measuring/validating the concentration of a stock solution
 - Stock solutions may not be stable over time
- Counter titrate with acid/base
 - HCl
- Test with a sample with a known concentration (calibrator/standard)
- Run calibrator/standard at start and end of an analytical run
- Troubleshooting to find errors/problems
Records

- Record and track analysis
- Record and track calibration information
 - Calibration values
 - Frequency
- Detailed notes
Winery Analysis: Today’s Topics

- Advantages of an in-house laboratory
- Laboratory needs assessment
- Techniques and recommendations for optimal results
- Laboratory decisions for the commercial winery

http://www.chaikenvineyards.com
Entry Level Analysis

- The basic tests
- What they measure
- What the numbers mean and how to use them
- How often to perform analysis
Tests

- Basic analysis and procedures for all wineries:
 - Soluble solids (Brix)
 - pH
 - Titratable acidity
 - Free SO₂
 - Estimate residual sugar
 - Estimate malic acid
 - General heat and cold stability
 - Bench trials
Tests

- Additional tests for intermediate/advanced laboratory:
 - EtOH
 - Malic acid
 - Residual/reducing sugar
 - Volatile Acidity
 - Advanced heat and cold stability
 - Microbial
Soluble Solids

- **Hydrometers**
 - Multiple scale ranges (+5/-5)
 - Useful for tracking fermentations

- **Refractometer**
 - Digital
 - Less useful for tracking fermentation

- **EtOH prediction**

- **Grape sampling/ripening**
Residual Sugar

- Residual vs. Reducing
- Need to understand how much sugar remains in wine
 - Bottle stability
 - Desired sweetness
- Stuck fermentations
- Can not rely on a hydrometer
- Estimate using Clinitest
- Send out for final value
 - Or measure using enzymatic testing
pH

- Purchase a quality bench top meter
 - Fisher/Orion, Mettler Toledo
- Ideally 3 point calibration, 0.01 pH units
- Reading will pause when stable
- Reports slope values after calibration
pH

- Important for microbial stability
 - SO2
- Color, particularly rosé wines (SO2)
- Berry samples – monitor ripening
- Must – start pH, make adjustments
- Fermentation – watch for pH spikes/changes
- Post fermentation – at least once a month
 - FSO2 additions, changes in pH could indicated spoilage
- Cold stability
 - 3.65 break point
- MLF
Titratable Acidity

- Important for measuring sourness
- Expressed TAE
- When to measure:
 - During ripening: Harvest Parameter
 - After crush/press
 - Adjust if necessary or interested
 - After fermentation
 - After cold stabilization
 - During aging
 - Prior to bottling
Titratable Acidity

- TA and pH may be related, but one cannot tell you what the other is
- Manual vs automated methods
 - Time, expertise, budget, precision
Titratable Acidity

- To de-gas or not to de-gas?
 - CO2 acts as an acid when dissolved in solution
 - High CO2 wines (during or just finished fermentations) should be degassed for best results
 - Heating up on hot plate
 - Microwave
 - Filter with a syringe filter
SO$_2$

- Free and total SO$_2$
- Important for:
 - Microbial stability
 - Oxidation
- Measure and adjust after fermentation
- Measure and adjust regularly (1x+ per month)
SO₂

- Multiple methods and equipment available
- Aeration / Oxidation
SO₂

- Other methods/equipment:
 - Iodine
 - Ripper
 - Automated/probe
SO2 and Oxidation

- Some oxidation prevention properties
 - Binding to precursors and oxidation products
 - Little to no scavenging of oxygen
- Ethanol in the presence of O2 can become acetaldehyde
- O2 can lead to aerobic bacteria growth (*Acetobacter*)
 - Acetic acid and ethanol leads to ethyl acetate
- SO2 is not an effective strategy against high oxygen pressure environments
- Sound cellar practices and equipment is best
Malic Acid

- Determining when MLF has completed
 - Avoid spoilage and other faults
- Perform regularly during MLF
- Paper Chromatography
 - Indicates if MLF has or is near finished
 - Sensitive to about 100 ppm
 - Hard to measure MLF progress
 - Takes approximately 24 hours
 - Less than desirable odor
- Send out for analysis
- Presence or absence of CO2 does not correlate to MLF activity or malate levels
Malic Acid

- Enzymatic testing with spectrophotometer
 - May need to decolorize sample with PVPP
 - Provides actual malic acid content
 - Can allow for tracking of MLF
 - Ensure proper residual malate levels are achieved.

http://schaechter.asmblog.org
Stability Testing

- Hot and cold stability
 - Cold Stability
 - Refrigerator/Cold storage test
 - Quick result
 - Filter while chilled
 - Place sample in refrigerator, observe over a week
 - Place sample at -4C, observe after 2-3 days
 - Use a small freezer with a temp controller
- Conductivity testing
 - Chill sample, add KHT, measure difference in conductivity
Stability Testing

- Heat stability
 - Usually conducted with a bentonite fining trial
 - Visual or turbidity assessment

- Open to debate:
 - Usefulness
 - Testing parameters
 - Interpretation

- Water bath
- Bentotest
- TCA
Bench Trials

- A bunch of same size containers
- Measure accurately
- Create a stock solution
 - Scale accurate to 0.1 to 0.01 g
- Use a micropipettor
- Attempt to duplicate winery conditions
 - Mimic filtration
- Purchase a new model
 - Avoid Ebay
- Start with a 100uL to 1000 uL
- (1 to 5 mL nice for juice TA)
- Eppendorf
- Rainin
Advanced Testing

- Ethanol
- Enzymatic analysis
- Color and phenolics
- Volatile acidity
- YAN
Ethanol

- Small winery:
 - Distillation vs. ebulliometer
- Cost and time
 - In house vs. outside laboratory
- Sweet wines and high alcohol wines
- Labeling requirement
- Troubleshooting
- Advanced:
 - NIR (Anton Paar – Alcolyzer)
 - GC
 - WineScan
 - Enzymatic?
Volatile Acidity

- Primarily acetic acid
- Cash still or enzymatic
- TTB limit
- A wine fault, often before TTB limit
- Can be measured prior to sensory detection
- QA/QC
- Measure after AF, throughout MLF, and regularly during storage
YAN

- Yeast Assimilable Nitrogen
- Two tests
 - Ammonia
 - Free Amino Nitrogen
- Ammonia
 - Enzymatic test
 - Formal Titration
 - ISE Electrode
- Free Amino Nitrogen
 - OPA
 - Spectrophotometer
Spectrophotometer

- Enzymatic assays available to measure a wide array of food and beverage components
 - Malate, RS, VA, YAN
 - Color and phenolics
- UV vs Vis
- Multiple micropipettes
Spectrophotometer

- Dealing with high color samples:
 - High color increases start Abs
 - Dilution may not be effective
 - Polyphenols may interfere with analysis
 - 0.1 g PVPP in 10 mL of sample
 - Malate
 - May be useful to consider for other spec analysis
Spectrophotometer

- Multiple options exist
- MegaQuant from Megazyme
- Unitech Scientific
Microbial

- Microscope
 - Measure yeast counts and viability
 - General identification of microbes
 - Assessment of sediment
- Camera
- Plating
 - Dedicated/controlled environment
- Illustrated Guide to Microbes and Sediments in Wine, Beer
- Microbiological Analysis of Grapes and Wine: Techniques
Books

- UC David Bookstore (Enology and Viticulture)
- Chemical Analysis of Grapes and Wine: Techniques and Concepts
- Wine Analysis and Production
Review

- Importance of laboratory analysis
- Analytical needs and capabilities for your winery
- Proper technique
- Appropriate analysis
Questions?

- Nick Smith
- NSmith35@wisc.edu