Potential utility of providing high-intensity, variable step training for improving locomotion in patients across neurological disorders

T. George Hornby, PT, PhD
Associate Professor
Department of Physical Therapy and Kinesiology & Nutrition
University of Illinois at Chicago

Director, Locomotor Recovery Laboratory
Director of Research, Ability Lab
Rehabilitation Institute of Chicago

Strategies to improve locomotor function in patients with neurological injury

- Functional Electrical Stimulation
Strategies to improve locomotor function in patients with neurological injury

- Functional Electrical Stimulation
- Resistance training/therapeutic exercise
- Body-weight supported treadmill training
- Robotic-assisted training
Strategies to improve locomotor function in patients with neurological injury

- Functional Electrical Stimulation
- Resistance training/therapeutic exercise
- Body-weight supported treadmill training
- Robotic-assisted training
- Alternative therapies
 - Hydrotherapy
 - Tai Chi
 - Acupuncture

Attempts to apply “principles of neuroplasticity” to locomotor training interventions

- Animal/human studies have identified specific factors that influence neuroplasticity (Kleim and Jones 2008)
 1. Use it or lose it*
 2. Use it and improve it*
 3. Specificity Matters
 4. Repetition Matters
 5. Intensity Matters
 6. Time Matters
 7. Salience Matters
 8. Age Matters
 9. Transference
 10. Interference
Animal/human studies have identified specific factors that influence neuroplasticity (Kleim and Jones 2008)

1. Use it or lose it*
2. Use it and improve it*
3. Specificity Matters
4. Repetition Matters
5. Intensity Matters
6. Time Matters
7. Salience Matters
8. Age Matters
9. Transference
10. Interference

Current clinical practice
- Lacks high dosages of stepping practice (average 100-800 steps/session during in- and out-patient rehabilitation; Lang et al 2009)
- Lacks cardiovascular intensity (2.8 mins/session spent in heart rate zone)

Important parameters of rehabilitation interventions

- **Amount** of specific practice are important intervention parameters (Hesse 1995, Pohl 2002, Sullivan 2007, Moore 2010)
 - Task-specific practice is thought to mediate activity-dependent neuroplasticity (Edgerton 2012, Liepert 1998)
 - Animal studies suggest thousands of repetitions are necessary for neuroplastic changes (DeLeon 1999)
How does “amount of practice” contribute to locomotor outcomes?

- Individuals post-stroke do not receive substantial amounts of task-specific practice during rehabilitation (Lang et al 2007, 2009)

- Could higher doses of stepping result in improved walking ability? (Moore et al 2010)

Dose-response relationships: Moore et al 2010

- Large amounts of stepping practice post-stroke (Moore et al 2010)
 - Monitored stepping activity with Step Activity Monitors (SAMs)
 - Stepping during regular PT ~200-1000 steps/session
 - Stepping during locomotor training ~2000-6000 steps/session
Dose-response relationships:
Moore et al 2010

- **Dose** = stepping practice during therapy/training
- **Response** = improvements in daily stepping following therapy/training

Important parameters of rehabilitation interventions

- **Intensity** is also important
 - Training at higher speeds/cardiovascular intensities (Holleran 2014, Macko 2005) demonstrate greater improvements in locomotor function
 - Increased NGF/BDNF, enhanced muscular oxidative capacity
 - Increased cardiorespiratory function, decreased submaximal exertion
 - Motl and Pilutti 2012 Nature Rev Neurol

Dose
- A stepping practice during PT/IT

Response
- Δ daily stepping post-PT/IT

Relation between stepping practice and change in daily stepping:

- Stroke
- Motl and Pilutti 2012 Nature Rev Neurol

Power (watts)

- **Maximal oxygen uptake (L/min)**

Endurance

- **Conditioned**, **Normal**, **Sedentary**
Comparison of high- vs low-intensity stepping

- Robotic vs therapist-assisted training post-stroke
 - Robotic-assisted – guided, symmetrical stepping
 - Therapist-assisted – assist-as-needed

- Patients with chronic hemiparesis, (Hornby et al 2008)
 - Training – 12 30-min sessions
 - Testing – Post and 6 month follow-up

- Similar amount of practice

Therapist vs Robotic Assisted Training in Chronic Stroke

- Doubled improvements with therapist vs robotic assistance
- Consistent across severity of walking impairments
- May be due to differences in cardiovascular responses during training (Israel et al 2006, Hornby et al 2012)
Additional finding about errors during stepping training?

- Lokomat entrained symmetrical gait pattern
- Those who received robotic-assisted training demonstrated less symmetry

![Graph showing % single limb stance and Step length asymmetry](image)

Contribution of errors and variability of locomotor practice??

- Just walking on a treadmill at high intensity doesn’t always elicit gains in walking function (Macko et al 2005, Moore et al 2010)
- Augmenting errors during learning may enhance magnitude/accelerate learning (Bastian 2006, Reisman et al 2010)
- Greater errors associated with variable contexts
 - Task/environmental variability
 - Shah et al 2012 - Forward vs variable treadmill training
 - van den Brand et al 2012 - Forward treadmill vs Overground/stairs
- Is variability important? What should be variable? How much? When?
Outline

- Introduction
 - Contribution of amount and “intensity” of task-specific locomotor practice
 - Many studies minimize potential contributions of errors and variability

- Feasibility of providing large amounts of stepping activity in variable contexts in subacute/chronic stroke
 - Effects on locomotor behaviors
 - Effects on non-locomotor behaviors

- Future directions and clinical application

Preliminary feasibility study

- Given 1 hr, how much locomotor practice can we provide?
 - Maximize stepping practice? At high intensity?
 - Variable contexts/environments with sufficient challenge?
 - What is sufficient challenge - how hard?
 - What should patients have to adapt to during locomotor interventions?

- If only “higher level” locomotor training is practiced, can “lower level” tasks improve?
 - Leap-frog hypothesis (Horn et al 2005)
 - Reverse transfer (vs Gentile’s Taxonomy)
Pilot study - Methods

• Subjects: 22/25 individuals post-stroke completed ≥ 4 weeks
 – Unilateral hemiparesis, requires moderate assistance to ambulatory but < 0.9 m/s self-selected walking speed
 – 10 w/chronic stroke (> 6 mo; all ambulatory, duration = 41.2 mo)
 – 12 w/ subacute stroke (1-6 mo, 3 non-ambulatory, duration = 3.2 mo)

• 3 subjects terminated:
 – Relocation
 – Intolerance to exercise
 – Previously unreported medical issue (pulsatile mass in neck)

Methods

• Testing:
 – 1 month prior to training (chronic)
 – BSL, Post-4, Post-8, 3 month follow-up

• Locomotor outcomes:
 – Stepping activity during/outside of training
 – Self-selected, fastest possible 10 m, 6 min walk
 – Gait kinematics/symmetry
 – Peak VO2, gait efficiency and economy

• Non-locomotor outcomes
 – 5X sit-to-stand (time/kinematics/kinetics)
 – Berg Balance Scale
Methods: Training duration/amount

- Up to 40 1-hr sessions over 8-10 weeks

- Protocol: focus on directional stepping
 - First 2 weeks – all treadmill training (focus on speed/intensity)
 - Weeks 3-8:
 - Half treadmill: 25% speed training, 25% dynamic balance
 - Half overground: 25% speed/balance, 25% stairs
 - Monitoring stepping activity, HR/RPE throughout

- Priorities of training
 - Focus only on stepping
 - High aerobic intensity (70-80% heart rate reserve, up to 18 RPE)
 - Variability - Intensity/challenge enhanced with successful completion, switching between tasks

Increasing challenge/difficulty

Walking is continuous task, biomechanical subcomponents can be challenged separately
Challenging biomechanical subcomponents of walking

- Weight bearing/propulsion
 - Guidance/Assist-as needed – weight support, slow speeds
 - Error Augmentation –
 - Reduce weight support/assist as tolerated
 - Increase speed, propulsive demands/add weighted vest

- Leg swing
 - Guidance/Assist-as needed – manual/elastic assistance
 - Error Augmentation – elastic resistance, leg weights, stepping over obstacles

- Medial-lateral/anterior-posterior stability
 - Guidance/Assist-as needed – stabilize trunk, assistive devices
 - Error Augmentation – balance perturbations

“Worst case” scenario

Baseline testing
“Best case” scenario

Primary locomotor outcomes

- Daily and training stepping activity
 - Per day prior to, during and following training (post and follow-up)
 - Stepping activity during training (ave = 2873 per session – note: just treadmill is ~4000 steps/session)
Primary locomotor outcomes

• Gait velocity:
 – SSV: chronic = 0.23 m/s; subacute = 0.33 m/s (Effect size -1.34-1.64)
 – FV: chronic = 0.38 m/s; subacute = 0.54 m/s (ES: 1.53-1.62)
 – Recent published changes= 0.18 m/s (Ada et al 2003; different inclusion), subacute ~0.25 m/s (LEAPS)

Primary locomotor outcomes

• Six minute walk test:
 – chronic = 90 m; Ada et al 2003 ~60 m
 – subacute = 144 m; recent ~80 m (LEAPS)
• Approx. 33-50% reduction in O₂ cost (ES: 0.62-1.08)
Primary locomotor outcomes

• Relationship between stepping dosage vs outcomes (6 min walk)

• No relation between initial impairments and change

![Graph showing stepping dosage vs 6 min walk outcomes]

B: initial vs Δ6 min walk

y = 0.01x + 117
r = 0.00

Initial 6 min walk (m)

Secondary locomotor outcomes

• Gait symmetry
 – Single leg paretic limb stance time improvement from 20 to 26% (normal 40%; ES 1.35-1.68)
 – Step length asymmetry: 8 to 15% improvement (p = 0.06, ES = 0.50-0.84)

• Graded treadmill tests
 – Peak velocity increased from 0.5-6 to 0.9-1.0 m/s
 – Peak VO₂ increased by ~19%, efficiency improved by 13%
 – Kinetic/kinematic data
 • Increased active ROM for hip, knee, ankle sagittal plane
 • Increase moment/power generation for all
 • Primary determinants of gait speed are changes in non-paretic limb

![Graph showing graded treadmill tests results]
Outline

- Introduction
 - Contribution of amount and “intensity” of task-specific locomotor practice
 - Many studies minimize potential contributions of errors and variability

- Feasibility of providing large amounts of stepping activity in variable contexts in subacute/chronic stroke
 - Effects on locomotor behaviors
 - Effects on non-locomotor behaviors

- Future directions and clinical application

Secondary non-locomotor outcomes

- Five times sit-to-stand decrease
 - 25% chronic,
 - 40% subacute

- Berg Balance Scale
 - 6 pts chronic,
 - 8 pts subacute (~21 pts non-ambulatory)
Outline

- Introduction
 - Contribution of amount and “intensity” of task-specific locomotor practice
 - Many studies minimize potential contributions of errors and variability

- Feasibility of providing large amounts of stepping activity in variable contexts in subacute/chronic stroke
 - Effects on locomotor behaviors
 - Effects on non-locomotor behaviors

- Future directions and clinical application

Preliminary data: Single-blinded RCT in subacute stroke
Application to other diagnoses

• Do the same principles translate to other neurological populations?
 – Why wouldn’t they?
 – What are the potential concerns?

• Specifics related to multiple sclerosis
 – Increased fatigue???
 – Increased spasticity/uncoordinated movement???
 – Increased community participation/quality of life???

Conclusions

▪ Rationale for providing large amounts of high intensity, variable stepping activities

▪ Providing such interventions is feasible
 ▪ Effects on locomotor behaviors
 ▪ Effects on non-locomotor behaviors

▪ Future directions and clinical application
Acknowledgements

- Personnel
 - William Rymer, MD, PhD
 - Brian D. Schmit, PhD
 - David Chen, MD
 - Elliot Roth, MD
 - Ross Bogoey, DO
 - Catherine Kinnaird, MS
 - Michael Lewek, PT, PhD
 - Jennifer Moore, MPT, NCS
 - Jennifer Kahn, DPT, NCS
 - Kelly Rodriguez, MPT, NCS
 - Carey Holleran, DPT, NCS
 - Tony Echauz, DPT
 - Abi Leddy, DPT, MSCI
 - Patrick Hennessy, MPT, NCS

- Funding
 - NIDRR (RERC/RRTC/Model Systems SCI)
 - Christopher Reeve Paralysis Foundation
 - Paralyzed Veterans of America
 - Craig H. Nielsen Foundation
 - NIH/NICHD/NINDS
 - Department of Defense (SCI Trials Program)

Thank you and Questions?
Thank you!

Questions?