Toolmaster® Prepregs for Composite Tooling

Beta Prepreg

BENEFITS

- Exceptionally long out-life
 Allows a minimum of 6 months storage at room temperature while maintaining a superior tack level.

- Excellent post machining quality
 Allows machining of complex geometry and accurate details with low spring back and residual stresses.

- Outstanding toughness & Tg
 Tough, high Tg (484°F / 251°C) Benzoxazine resin ensures stability at high temperature and enables long tool service life.

Manufactured by AIRTECH using Henkel Loctite® Benzoxazine resin technology

- More than a manufacturer... A technical partner!

CEP

BENEFITS

- Excellent high temperature properties
 Can be used at a high service temperature (450°C/232°C) ensuring long tool life.

- Ease of use
 Epoxy like processing, easier to use than BMI.

- Low moisture absorption
 Cured laminates retain less moisture, reducing risk of porosity in parts.

TMFP & TMGP

BENEFITS

- Matched CTE
 Composite molds match tool and part CTE, improving part accuracy.

- Lower thermal mass than metal tools
 Allows faster heat up, shorter cures & greater productivity.

- Excellent adhesion
 Can also be used for reinforcing Airpad Rubber tooling.

Built in 1987 and has manufactured over 900 parts.

LTC

BENEFITS

- Low initial cure temperature
 Reduces thermal expansion of master model, improving mold accuracy.

- Cost effective option
 Lower cost, low temperature master model materials can be used.

- Excellent laminate quality
 Good surface finish and low void content produces longer life molds.

More than a manufacturer... A technical partner!
Toolmaster® Prepregs for Composite Tooling

More than a manufacturer... A technical partner!

• Exceptionally long out-life
 Allows a minimum of 6 months storage at room temperature while maintaining a superior tack level.

• Excellent post machining quality
 Allows machining of complex geometry and accurate details with low spring back and residual stresses.

• Outstanding toughness & Tg
 Tough, high Tg (484°F / 251°C) Benzoxazine resin ensures stability at high temperature and enables long tool service life.

• Matched CTE
 Composite molds match tool and part CTE, improving part accuracy.

• Lower thermal mass than metal tools
 Allows faster heat up, shorter cures & greater productivity.

• Excellent adhesion
 Can also be used for reinforcing Airpad Rubber tooling.

• Excellent high temperature properties
 Can be used at a high service temperature (450°/232°C) ensuring long tool life.

• Ease of use
 Epoxy like processing, easier to use than BMI.

• Low moisture absorption
 Cured laminates retain less moisture, reducing risk of porosity in parts.

• Low initial cure temperature
 Reduces thermal expansion of master model, improving mold accuracy.

• Cost effective option
 Lower cost, low temperature master model materials can be used.

• Excellent laminate quality
 Good surface finish and low void content produces longer life molds.

Manufactured by AIRTECH using Henkel Loctite® Benzoxazine resin technology

Built in 1987 and has manufactured over 900 parts.
Dear Members

This is my last Global Presidential message, as my mandate ends at the end of June, and a new Global president (much better than me) will be in charge.

It seem to me that this year has flown away fast. I still remember my first message and the feelings that I had about my contribution to this society; since then, almost a year has passed and now I am here writing my farewell message.

It has been a very fruitful year for me as your SAMPE Global President. I have had the privilege to contribute to many changes in the Society. The reorganization of SAMPE and the transition to a Global Society took place just four years ago, so it is natural that the first years are “assessment” years in which everything is continuously under test and the mechanisms are not fully automatic.

Therefore, in every Board meeting that I have participated, I have assisted to progress toward a better organization of SAMPE Global. In particular, two things that I consider very important have happened during this period: the official entry of China as a Region, and the introduction of the new logos. Both events were prepared when I was Vice President, but I had the luck to be President when they become a reality.

Having China as a new region has allowed SAMPE to reach fully global status, and our friends from China are now completely established in our society and their regional activities are increasing their international audiences.

The new logo had its debut in Paris this year. I was very curious to see how it looked printed on the signs and on the proceedings. I also wanted to know the opinion of the people attending the SAMPE Europe Summit. Well, I have to say that most of the people liked it, and those who did not were few. I hope that also in the other regions our new logo will be accepted and will become soon familiar.

Other changes are going to take place soon; one will concern this Journal as we are working to make it meet the needs of our members and sponsors with more scientific and technical contributions and less presidential talks such as this.

Before I finish this last message, let me mention and thank all the people that I have been working with during this last year. First of all, the entire SAMPE staff—all great friends and great workers. Then the Global Cabinet and the Global Board, I have been happy to share this time with you my friends. I must also mention Gregg and his efficiency and friendship. And, last but not least, all of you that support our society. It has been an honor for me to contribute to the progress of SAMPE Global and I will continue to do it as a Past President.

Good Bye
PRODUCTION CHALLENGES?

Bring us yours.

29. GEL COAT PRE-RELEASE
30. CLEANING NEEDS
31. TRANSFER
32. POOR FLOW
33. ABRASION

Discover the right balance of release ease and part cleanliness with Chem-Trend’s full suite of release systems for composite manufacturing. With solvent- and water-based options, our Chemlease® and Zyvax® process aids are specifically formulated to minimize transfer, produce higher-quality parts and extend equipment lifecycles.

Keep it clean with Chem-Trend.
Centennial celebrations don’t come very often – only once every 100 years. But when they do, there often is a lot of technological progress to celebrate. As SAMPE approaches its 75th anniversary as a Society in 2019, we can look at the Air Force Research Laboratory (AFRL) and the Boeing Company as they celebrate their 100th anniversaries this year. SAMPE has focused on a depth of material advancement and process engineering technologies. AFRL and Boeing have also focused on these same areas – with considerable interaction between all three entities. In fact, many of the technology advancements have come from the people of all three entities teaming together on moving critical technology forward over the past 100 years.

AFRL has its roots in Dayton, OH at a place close to where the Wright Brothers created early aviation history in their shop. McCook Field, an early Army Aviation location, became the home of the Materials and Manufacturing Directorate for what later would be the foundation of AFRL. AFRL has been the key and foundation for numerous “materials” advances” and “manufacturing technology growth” for advanced materials technologies and process engineering during the 1917-2017 period. Technologies associated with metals, metallurgy, polymers, ceramics, various composites, fiber reinforcements, high temperature materials, sensors and smart technology, nanotechnology, design and analysis methodologies, and, numerous other “leading edge technologies” in support of SAMPE’s mission.

AFRL, however, has provided much more than technology, materials and processing. From SAMPE’s earliest days, AFRL has provided SAMPE with the essence of its treasure in the contribution of its manpower and technologists over the past 70+ years. AFRL personnel are highly active in supporting major SAMPE events and have volunteered to serve SAMPE leadership roles. Additionally, AFRL staff have been acknowledged as SAMPE Fellows, Lubin Award winners, and Mort Kushner winners.

The Boeing Company also had its roots in 1917 and is currently the world’s largest aerospace company and leading manufacturer of commercial jetliners and defense, space and security systems. As America’s biggest manufacturing exporter, the company supports airlines and U.S. and allied government customers in more than 150 countries. Boeing products and tailored services include commercial and military aircraft, satellites, weapons, electronic and defense systems, launch systems, advanced information and communication systems, and performance-based logistics and training. Materials advancements and process engineering applications have been adapted in Boeing’s numerous products that we currently see every day.

Boeing has a long tradition of aerospace leadership and innovation. The company continues to expand its product line and services to meet emerging customer needs. Its broad range of capabilities includes creating new, more efficient members of its commercial airplane family; designing, building and integrating military platforms and defense systems; creating advanced technology solutions; and arranging innovative customer-financing options.

Similar to the AFRL, Boeing staff have and continue to serve on many task forces, committees and projects. Boeing’s SAMPE members have played (and continue to assume) key leadership roles with SAMPE. And, you will find Boeing engineers as SAMPE Fellows, Kushner and Lubin Award recipients.

The partnership SAMPE has with the AFRL and Boeing has contributed to advancing the knowledge and applications of advanced material technologies both of these renowned organizations have and continue to share and contribute to SAMPE and for this we are a stronger, better engineering society.

Congratulations on 100 years of service and technology advancements to our global community & to SAMPE.
Fast Nondestructive Testing for Composites

Shearography enables:

- Non-contact inspection
- Detection of damage, disbands, delaminations, voids and porosity
- Testing of parts, entire structures or vehicles

LTI offers Shearography NDT Training to ASNT SNT-TC-1A, NAS 410.

Contact us to see how Shearography NDT can meet your inspection requirements:
+(610) 631-5043 ext.10
www.LaserNDT.com

LTI-2100M Compact Digital Shearography Camera

Porosity and voids in a COPV (Field of View 10 x 10 inches)
Fiber bridging defects in a carbon fiber COPV
Rocket engine metallic braze bond defects
Evaluation of RTM370 Polyimide Composites by Resin Film Infusion (RFI)

Abstract

RTM370 imide oligomer based on 2,3,3’,4’-biphenyl dianhydride (a-BPDA), 3,4’-oxydianiline (3,4’-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280°C with a pot-life of 1-2 h and a high cured glass-transition temperature (Tg) of 370°C. RTM370 resin has been successfully infused into fiberglass-stitched T650-35 carbon-fabric preforms (ranged from 3- to 6-mm thick) by resin film infusion (RFI). The resulting composite panels were inspected by ultrasonic C-scan and by photomicrographs before and after post-curing as a quality control. Mechanical tests such as un-notched compression (UNC), open-hole compression (OHC), and short-beam shear strength (SBS) at ambient and elevated temperatures were performed before and after isothermal aging at 288°C for 1000 h to assess high-temperature performance. Thermal cycling of RTM370 stitched composites was also conducted from -54°C to 288°C for up to 1600 cycles to evaluate the microcrack resistance of RTM370 polyimide composites fabricated by RFI.

Introduction

Resin film infusion (RFI), developed initially by Boeing, is a relative new technique to fabricate polymer-matrix composites without the use of carbon-fiber prepregs impregnated with resins and, often, with solvents. A resin as a film is placed on top or underneath a fibrous preform, tooling is located, and the assembly is enclosed with a vacuum bag through which the vacuum is applied. As the temperature rises in the autoclave, the resin film melts and infuses into the laminates beneath under the combined pressure gradient of the vacuum and autoclave pressure. The assembly is then cured into composites at elevated temperature. The advantages of RFI include: 1) Ability to produce composites with high fiber-to-resin ratio and low void content. 2) Environmental friendly without volatiles. 3) Capability to fabricate large components with minimum workforce. Numerous epoxies and bismaleimides (BMI) resins have been fabricated by RFI into high-quality composites and aircraft parts in the aerospace field. However, the performance of epoxy and BMI are limited to 177°C and 232°C use temperatures, respectively. Boeing has conducted RFI using newly developed low-melt-viscosity, imidized oligomers, such as PETI-3306 or RTM370, in order raise the higher temperature capability of composites for aircraft applications.

This paper presents an evaluation of RTM370 polyimide composites, fabricated with fiberglass stitched T650-35 fabric preforms (ranged from 3- to 6-mm thick) by resin film infusion (RFI), for potential airframe application. Mechanical properties were conducted from room temperature to 288°C (550°F). Additionally, mechanical properties after isothermal aging at 288°C for 1000 h and microcrack resistance after thermal cycling from -53°C to 288°C will be discussed.

Figure 1. Solvent-free preparation of RTM370 imide oligomers.
Impact of HP-RTM Process Parameters on Mechanical Properties with Epoxy and Polyurethane Systems

Abstract
High pressure resin transfer molding is a method for processing continuous fiber reinforced composites at industrial production rates. This paper examines the more common HP-IRTM variant, where the ‘I’ stands for injection. To achieve a composite with the best mechanical properties, a combination of the fiber, resin and processing parameters must be understood. Two different matrix materials, epoxy and polyurethane, and two different fibers, glass and carbon, are processed on a KraussMaffei HP-RTM system at the Fraunhofer Project Center in London, Ontario, Canada. Several processing parameters are investigated during the manufacturing of these polymer matrix composites including the press force during injection, the press force during cure, and the injection rate. Subsequently, the manufactured parts are characterized and their mechanical properties are evaluated. The results of this study shed light on the critical properties and process settings in HP-RTM production.

Background
The effective use of composite materials in structural automotive applications requires robust understanding of process-property relationships. One major technology used to manufacture structural parts is high-pressure resin transfer molding (HP-RTM) as it utilizes continuous fibers in a stitched or woven fabric form.

Resin transfer molding has long been used to create structural composites. The main drawback of the process is the long infusion time coupled with a slow cure reaction. Recently, high-pressure infusion has been tested as a method to dramatically reduce the cycle time, as reported1,2. These past studies have examined the different process variants and the effect of pressure on the resulting quality of the produced material.

This paper continues the study of the injection variant of high pressure resin transfer molding process by examining some of the influences of the processing conditions on the composite mechanical properties. Two of the most common matrix materials, epoxy and polyurethane, are compared in a parametric study of the main processing parameters: the injection rate, the press force during injection, and the press force during cure.

To manufacture the samples, a new KraussMaffei Rimstar 8/4/8 high-pressure RTM system at Fraunhofer Project Centre (FPC) was used. In this study 20, 40 and 60 g/s injection flow rates used were used, while the press forces were varied between 1000-5000kN. The nominal part thickness was 2.3 mm, while the fiber volume fraction was set to a target value of 60%.

The results of this study shed light on the critical forming properties and process settings required to attain the peak performance. The influence of processing parameters on the material properties were determined with this study.

Experimental Setup
The process flow of the high-pressure injection RTM (HP-IRTM) is similar to the standard RTM process. The main difference is injection of material system at high pressure within a short period of time. The high-pressure injection thus implies that a significant amount of force is required to maintain the mold closed. In this process, the mold remains completely closed before the injection starts, thus defining the fiber volume content and the final part thickness. A preform is placed into mold before closing. The major impregnation of the preform is in the direction of width and length (x-y axis) and should be completed before the reactive resin starts to cure. A vacuum unit can be connected to the mold to further improve the part quality and to reduce the amount of voids3. The main process steps of the HP-IRTM cycle are shown in Figure 1.

The main advantage of HP-IRTM, compared to the standard RTM process, is the ability to use fast curing resin systems. This is particularly needed for high volume productions of automotive parts. However, high injection-pressure and high flow rates can lead to “fiber-
Integration of Composite Part Design and Processing Simulation in Liquid Composite Molding (LCM)

Abstract

In Liquid Composite Molding (LCM) processes, processing simulations are necessary to virtually execute the manufacturing steps to verify the design. Processing parameters, such as infusion/venting plan, should be optimized and the process simulation results should provide accurate feedback to designers suggesting necessary design modifications. It is highly desirable to couple the manufacturing process design with the part design cycle, so that the designer can modify the part to meet the design requirements, include manufacturing constraints and maximize part yield simultaneously. However, the inherent material variability and geometry features designed for mechanical requirements may introduce processing variations (for example flow disturbances) that introduce variability in the manufacturing process and require hundreds of simulations to capture the effect of the stochastic nature. This also requires large amount of highly specialized pre-and post-processing analysis and consequently, it prevents the designers from using processing simulation tools effectively. In this paper, a set of new tools are developed and integrated with part design software to provide automated support for analyzing process variability. Three levels of process simulations are developed, automated and integrated with optimization algorithms to generate robust processing feedback to the designer. With these tools interfaced with CAD design software, the designer is provided with both accurate manufacturability analysis and suggested geometry modifications for the part.

Introduction

In Liquid Composite Molding (LCM) processes, dry fiber reinforcement is placed within a mold cavity, which is then infused with catalyzed liquid resin until it is completely saturated. Once the resin cures the part is de-molded. Two most common variations of LCM processes are Resin Transfer Molding (RTM) and Vacuum Assisted Resin Transfer Molding (VARTM). RTM uses a rigid mold so that highly pressurized resin can be injected, whereas VARTM uses one-sided mold and a vacuum bag to seal the mold, and atmospheric pressure is used as the driving force. There are other techniques such as RTM-Light which uses a compliant mold. LCM is widely used because it allows one to manufacture complex net-shaped parts with good structural properties and surface finish. Mold filling simulation describes flow of resin through fiber preforms which are modeled as porous continuum. Many numerical simulations have been developed to forecast the mold filling patterns, which can predict the flow patterns once the geometric and local permeability information is provided as input. For perfectly deterministic, repeatable process in which the permeability may vary from location to location but will not change from one part to the next, only one simulation is necessary to identify the vent locations for desired inlet location(s) to fill the mold without any dry regions or voids. We have also developed a three dimensional Finite Element/Control Volume (FE/CV) based simulation called “Liquid Injection Molding Simulation” (LIMS) which can predict the flow patterns once the geometric and local permeability information is provided as input. For perfectly deterministic, repeatable process in which the permeability may vary from location to location but will not change from one part to the next, only one simulation is necessary to identify the vent locations for desired inlet location(s) to fill the mold without any dry regions or voids. These mold filling simulation tools can provide the user an estimation of the manufacturing design of the part. However, the functional design of a composite part is usually addressed separately and well in advance of the design of the manufacturing process, keeping with the tradition of first ensuring functional design.
The use of composites in the aerospace industry has increased dramatically in the past few decades. To keep up with this growth, Mokon offers a full range of quality temperature control equipment from -20°F to 700°F (-29°C to 371°C).

Visit us at SAMPE Booth #F37 in Seattle May 23-24 to find your process control solution.

To learn more, download our technical flyer at mokon.com/composites

Designed to Perform. Built to last.
Visit Us At Booth L9

We Make Composites Work
The Industry Leader in Prepreg Formatting

Aerospace fabricators can trust our PrecisionSlit™ technologies to produce best-in-class slit tape, thermoplastic chop, and ply kits customized to streamline workflow, free up internal resources, and improve manufacturing efficiencies.

Want to learn how to make your composites work? Stop by Booth L9.

webindustries

Cost Savings with Production Services
• Fulfills your rigid foam needs & also offers in-house machining
• Accommodates one-off tools and parts, and large-scale projects

Rigid & Flexible Molded Foam Parts
• Self-skinning and flame-retardant
• Rigid molded foam is an excellent alternative to aluminum parts
• Size, shape, texture and color are based on customer specification
• Made to shape, producing less waste

Visit us at SAMPE 2017
Booth F33

© 2017 Web Industries, Inc. All rights reserved.
Pacific Coast Composites

We deliver confidence

The right materials.
The right quantities.
The right time.

Your Authorized Connection to

1-888-535-1810
PCComposites.com
Sales@pccomposites.com
Superior Testing Performance for the Most Demanding Applications

AG-X plus Series Precision Universal Testers

Shimadzu’s AG-X plus series testers deliver high-level control, intuitive operation, and convenient support functions. Consisting of seven standard floor/tabletop models, plus options for extended height, wide frame, and ultrahigh-speed configurations, they are the primary choice for demanding testing applications.

Key features include:

- Enhanced torsional rigidity
- High-speed (5 kHz) data capture sampling rate
- Test force accuracy guaranteed within ±0.5% from 1/1 to 1/1000 of the load cell capacity
- Smart Controller for easy operation and data confirmation
- Powerful, intuitive software

Learn more. Call (800) 477-1227 or visit www.ssi.shimadzu.com/AGX

Shimadzu Scientific Instruments
7102 Riverwood Dr., Columbia, MD 21046

Mikrosam®
EQUIPMENT & SOFTWARE SOLUTIONS
- AUTOMATED FIBER PLACEMENT (AFP)
- AUTOMATED TAPE LAYING (ATL)
- PREPREG MAKING & SLITTING
- FILAMENT WINDING
- FACTORY AUTOMATION

Tel.: +389 48 400 100 sales@mikrosam.com www.mikrosam.com
YOUR CUSTOM SOLUTIONS PROVIDER
It’s our mission to improve your process with improved machinery. We custom design each composite molding press to meet your specific process requirements. Our extensive product lines and our advanced control packages give customers greater flexibility and press control, optimizing product quality and process performance.
Visit frenchoil.com to learn more about our custom hydraulic press solutions.

TMP, A Division of French
Piqua, Ohio U.S.A. - 937-773-3420 - hydraulicsales@frenchoil.com - www.frenchoil.com

“Advanced” Composite Solutions... Delivered Daily

Our large inventory and short lead times on Prepregs make us the choice supplier to the Composites Industry.

We specialize in small quantity prepreg orders.

Contact us today to discuss your particular application.

REVCHEM Composites
REVCHEM COMPOSITES, INC. • Toll Free: (800) 281-4975 • email: prepreg@revchem.com • visit: www.revchem.com
When you partner with Composites One, you’ll work with a dedicated team of PEOPLE, from Advanced Composites sales specialists and technical market managers who understand the challenges you face, to regional customer service reps and local support teams at over 35 North American distribution centers, including those with onsite prepreg freezer storage. You’ll gain access to the industry’s broadest range of high performance PRODUCTS, learn about innovative PROCESSES that can help your business grow, and get the PERFORMANCE you should expect from the nation’s leading advanced composites distributor.

That’s the power of Partnership. The Power of One – Composites One.
Pyrograf Products, Inc.

Producer of high quality, AFFORDABLE carbon nanofibers.

Pyrograf Products, Inc.
Cedarville, Ohio • 937-766-2020 x137
pdlake@apsci.com • www.pyrografproducts.com

MACHINING & TESTING OF ADVANCED COMPOSITE MATERIALS

Comprehensive Testing Expertise
• Mechanical • Physical • Thermal
• Environmental • Fatigue
MMC, CMC, & PMC Experience

Email: info@cintestlabs.com
www.cintestlabs.com
1775 Carillon Blvd., Cincinnati, Ohio 45240
Phone: 800/811-9220 • Fax: 513/851-3336
Over 40 types of fixtures in stock, ready to be shipped.

Expert consultation with Dr. Adams

Email or call today to discuss your fixture and custom design needs.

Wyoming Test Fixtures INC.

FLEXURE FIXTURES FOR EVERY SPECIMEN SIZE

Long Beam Flexure Fixture w/Alignment Rods and Bearings
ASTM C 393, D 7249

Three and Four Point Flexure
ASTM D 790, D 6272, D 7264

Miniature Flexure Fixture

Three and Four Point Short Beam Fixture
ASTM D 790, D 6272, D 7264

Reversed Cycle Flexural Fatigue

We provide quotes for a variety of grips, fixtures, and jigs. We carry over 40 types of fixtures in stock, available for immediate delivery.

Email or call us today. We look forward to hearing from you.

Dr. Donald F. Adams
President
50 years of Composite Testing Experience

2960 E. Millcreek Canyon Road
Salt Lake City, UT 84109
Phone (801) 484.5055
Fax (801) 484.6008
email: wtf@wyomingtestfixtures.com
www.wyomingtestfixtures.com
Silent approach.

Electrically conductive ROHACELL® EC foam has unbelievable dielectric properties. With a phenomenal ability to absorb electromagnetic waves at radar frequencies and exceptional thermomechanical properties, it is a superior sandwich core solution for electromagnetic shielding and absorbing components.

Learn more at www.rohacell.com
Servicing the Composites Industry with unique resin reactive building blocks and fiber wetting agents

Your Technology - Siltech Chemistry

Innovative and Customized Products
Optimum Performance
Excellent Customer Service

Need Flexibility and Low Temp. Impact Resistance?
Servicing the Composites Industry with unique resin reactive building blocks and fiber wetting agents

Your Technology - Siltech Chemistry

Siltech Corporation
225 Wicksteed Avenue; Toronto, Ontario, Canada M4H 1G5
Tel: (416) 424-4567; Fax: (416) 424-3158
www.siltech.com
Over 50 years Advanced Composites & FRP Composites experience

Expert Witness, Litigation, Insurance and Patent Review Support:
- Composite materials and processing technologies
- Advanced composites and FRP composites
- Failure investigation and process deficiencies
- Pressure vessels, pipe and fittings, tanks
- Sports/recreational products (bikes, arrows, etc.)
- Composites product liability failures

Manufacturing, Processing, Design, Analysis Support:
- Consulting and fabrication support services
- Plant definition, equipment assessment and plant setup
- Filament winding and fiber placement technologies
- Resin infusion technologies (RTM, VARTM, RFI, & variations)
- Hand lay-up, vacuum bagging and contact molding
- Tooling design support and prototyping
- CNG, NGV, LPG, SCBA and other pressure vessels
- Underground/above ground tanks, pipes, fittings
- Infrastructure and sports & recreation products
- Damage assessment, protection and failure investigation

Over 550 technical publications, presentations and reports

Training Services:
- In-plant courses, tutorials, seminars, workshops, training manuals, and plant documents

BTG Composites Inc.
Dr. Scott W. Beckwith
4956 S. Jordan Canal Road, Taylorsville, UT 84129
Phone: +1 801-262-8307 Mobile: +1 801-232-5407
www.BTGCompositesPro.com Email: swbeckwith@aol.com

For more information contact: Brett MacDonald, Product Sales Manager
Lightning Strike Technologies
E-mail: b-macdonald@ Dexmet.com

AS9100 Certified • Tested and Proven Technology
www.expanded-materials.com • (203) 294-4440
Coast-Line International

Your One Stop Tech Shop

- Woven Cloth & Prepreg
- Film Adhesives
- Sealants
- Core Splice
- Potting Compound
- Hot Bonders
- Vacuum Bag & Release Film
- Breather
- Tooling Materials
- Connections
- Vacuum Pumps
- Infusion Resins
- Core Material
- Specialty Tapes
- Clean Room Consumables
- Penetrants

Stocking Locations in NY, GA, MA
With Same Day Shipping

Ph: 631-226-0500 ~ Fax: 631-226-5190
email@coast-lineintl.com ~ www.coast-lineintl.com

McCLean Anderson

WE DESIGN BUILD

BUILD IT STRONGER LIGHTER

Advanced Filament Winding Machines
Custom Auxiliary Equipment
Cutting Edge Software

www.mccleananderson.com
715.355.3006

Take your career to the next level

Advanced composite engineers and technicians are in high demand across all industries. We offer accelerated learning and active training courses in engineering, manufacturing and repair of composites. One 5-day course can provide the applicable skills needed to advance your career. Gain the Abaris Advantage, take the first step here – www.abaris.com

ABARIS TRAINING

+1 (775) 827-6568 • www.abaris.com

ABARIS TRAINING

Take your career to the next level

Advanced composite engineers and technicians are in high demand across all industries. We offer accelerated learning and active training courses in engineering, manufacturing and repair of composites. One 5-day course can provide the applicable skills needed to advance your career. Gain the Abaris Advantage, take the first step here – www.abaris.com

ABARIS TRAINING

+1 (775) 827-6568 • www.abaris.com
DOING BUSINESS SINCE 1981
With over 4,000 hot bonders delivered to over 800 customers, over 3,000 are still in service.

Dual Zone HCS9200B Rev-16
The Acknowledged Industry Standard

For over 30 years, HEATCON Composite Systems has been at the forefront in supporting advanced composite repair and manufacturing. We achieve thermal uniformity through Heat and Control.

To find out more visit www.heatcon.com or email info@heatcon.com
Contact Heatcon for hot bonders, heat blankets, and materials
Authorized Distributor for 3M and Hexcel

DOING BUSINESS SINCE 1981
With over 4,000 hot bonders delivered to over 800 customers, over 3,000 are still in service.

Dual Zone HCS9200B Rev-16
The Acknowledged Industry Standard

For over 30 years, HEATCON Composite Systems has been at the forefront in supporting advanced composite repair and manufacturing. We achieve thermal uniformity through Heat and Control.

To find out more visit www.heatcon.com or email info@heatcon.com
Contact Heatcon for hot bonders, heat blankets, and materials
Authorized Distributor for 3M and Hexcel

Heated Tooling for 3M and Hexcel
Unique Polyamide

- High Modulus and Strength
- Easy Molding
- Water Resistance
- Good Surface Appearance

MITSUBISHI GAS CHEMICAL AMERICA
www.mgc-a.com
composite@mgc-a.com
Advertisers Index (As seen in the full print and online versions of the SAMPE Journal.)

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
<th>Web-Site/E-Mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaris Training</td>
<td>62</td>
<td>www.abaris.com</td>
<td>+1 775.827.6568</td>
</tr>
<tr>
<td>Airtech International, Inc. IFC</td>
<td>82</td>
<td>www.airtechonline.com</td>
<td>+1 714.899.8100</td>
</tr>
<tr>
<td>APCM</td>
<td>82</td>
<td>www.prepregs.com</td>
<td>+1 860.564.7817</td>
</tr>
<tr>
<td>Bally Ribbon Mills</td>
<td>82</td>
<td>www.ballyribbon.com</td>
<td>+1 610.845.2211</td>
</tr>
<tr>
<td>BTG Composites, Inc.</td>
<td>88</td>
<td>www.BTGCompositesPro.com</td>
<td>+1 801.232.5407</td>
</tr>
<tr>
<td>CAMX</td>
<td>18</td>
<td>www.thecamx.org</td>
<td>+1 626.521.9460</td>
</tr>
<tr>
<td>ChemTrend</td>
<td>3</td>
<td>www.chemtrend.com</td>
<td>+1 517.545.7981</td>
</tr>
<tr>
<td>Cincinnati Testing Labs</td>
<td>43, 82</td>
<td>www.cintestlabs.com</td>
<td>+1 513.851.3313</td>
</tr>
<tr>
<td>Coast-Line International</td>
<td>61, 82</td>
<td>www.coast-lineintl.com</td>
<td>+1 631.226.0500</td>
</tr>
<tr>
<td>Composite & Wire Machinary</td>
<td>82</td>
<td>www.compositewire.com</td>
<td>+1 401.884.4760</td>
</tr>
<tr>
<td>Composite Polymer Design</td>
<td>82</td>
<td>www.epoxi.com</td>
<td>+1 800.755.8568</td>
</tr>
<tr>
<td>Composites One</td>
<td>27</td>
<td>www.compositesone.com</td>
<td>+1 800.621.8003</td>
</tr>
<tr>
<td>Composites Sources</td>
<td>83</td>
<td>www.forcomposites.com</td>
<td>+1 225.273.4001</td>
</tr>
<tr>
<td>Concordia Manufacturing, LLC</td>
<td>82</td>
<td>www.concordiafibers.com</td>
<td>+1 401.828.1100</td>
</tr>
<tr>
<td>DeComp Composites, Inc.</td>
<td>48</td>
<td>www.decomp.com</td>
<td>+1 918.358.8881</td>
</tr>
<tr>
<td>Dexnet</td>
<td>67</td>
<td>www.expanded-materials.com</td>
<td>+1 203.294.4440</td>
</tr>
<tr>
<td>Diab</td>
<td>68</td>
<td>www.diagroup.com</td>
<td>+1 972.228.7612</td>
</tr>
<tr>
<td>DuraFiber Technologies</td>
<td>82</td>
<td>www.durafibertech.com</td>
<td>+1 704.912.3700</td>
</tr>
<tr>
<td>Elantas PDG</td>
<td>83</td>
<td>www.elantas.com/ pdg</td>
<td>+1 314.622.8748</td>
</tr>
<tr>
<td>Element Materials Technology Los Angeles, LLC</td>
<td>83</td>
<td>www.element.com</td>
<td>+1 818.247.4106</td>
</tr>
<tr>
<td>Engineered Solutions</td>
<td>83</td>
<td>www.edactechnologies.com</td>
<td>+1 203.806.6818</td>
</tr>
<tr>
<td>Evonik Industries</td>
<td>49</td>
<td>www.rohacell.com</td>
<td>+1 801.495.9403</td>
</tr>
<tr>
<td>Fabric Development, Inc.</td>
<td>83</td>
<td>www.fabricdevelopment.com</td>
<td>+1 215.536.1420</td>
</tr>
<tr>
<td>General Plastics</td>
<td>15</td>
<td>www.generplastics.com</td>
<td>+1 253.330.7782</td>
</tr>
<tr>
<td>General Sealants, Inc.</td>
<td>83</td>
<td>www.generalsealants.com</td>
<td>+1 800.762.1144</td>
</tr>
<tr>
<td>Heatcon Composite Systems</td>
<td>74</td>
<td>www.heatcon.com</td>
<td>+1 800.556.1990</td>
</tr>
<tr>
<td>Janicki Industries</td>
<td>IBC</td>
<td>www.janicki.com</td>
<td>+1 360.814.1838</td>
</tr>
<tr>
<td>Lap Laser</td>
<td>45</td>
<td>www.lap-laser.com</td>
<td>+1 859.283.5222</td>
</tr>
<tr>
<td>Laser Technology, Inc.</td>
<td>6</td>
<td>www.laserndt.com</td>
<td>+1 610.631.5043</td>
</tr>
<tr>
<td>C.A. Litzler Co., Inc.</td>
<td>65, 84</td>
<td>www.calitzler.com</td>
<td>+1 216.267.8020</td>
</tr>
<tr>
<td>McLean Anderson</td>
<td>59</td>
<td>www.mcleananderson.com</td>
<td>+1 715.355.3006</td>
</tr>
<tr>
<td>Masterbond, Inc.</td>
<td>84</td>
<td>www.masterbond.com</td>
<td>+1 201.343.8983</td>
</tr>
<tr>
<td>Matec Instrument Companies</td>
<td>33</td>
<td>www.matec.com</td>
<td>+1 508.393.0155</td>
</tr>
<tr>
<td>Material Testing Technology</td>
<td>12</td>
<td>www.mttusa.net</td>
<td>+1 847.215.7448</td>
</tr>
<tr>
<td>Maverick Corporation/Renegade Materials</td>
<td>71, 85</td>
<td>www.maverickcorp.com</td>
<td>+1 513.469.9919</td>
</tr>
<tr>
<td>Mikrosol</td>
<td>41</td>
<td>www.mikrosol.com</td>
<td>+389.48.400.100</td>
</tr>
<tr>
<td>Mitsubishi Gas Chemical America, Inc.</td>
<td>73</td>
<td>www.mgc-a.com</td>
<td>+1 212.687.9030</td>
</tr>
<tr>
<td>Mokon</td>
<td>8</td>
<td>www.mokin.com/composites</td>
<td>+1 716.876.9951</td>
</tr>
<tr>
<td>National Aerospace Supply Company</td>
<td>84</td>
<td>www.nationalaerospace.com</td>
<td>+1 949.240.6353</td>
</tr>
<tr>
<td>NDT Solutions</td>
<td>84</td>
<td>www.ndts.com</td>
<td>+1 715.246.0433</td>
</tr>
<tr>
<td>Northern Composites</td>
<td>77</td>
<td>www.northerncomposites.com</td>
<td>+1 603.926.1910</td>
</tr>
<tr>
<td>Pacific Coast Composites</td>
<td>17</td>
<td>www.pccomposites.com</td>
<td>+1 888.535.1810</td>
</tr>
<tr>
<td>Precision Measurements & Instruments</td>
<td>84</td>
<td>www.pmiclab.com</td>
<td>+1 541.753.0607</td>
</tr>
<tr>
<td>Pyrograf Products, Inc.</td>
<td>25</td>
<td>www.pyrografproducts.com</td>
<td>+1 937.766.2020</td>
</tr>
<tr>
<td>Renegade Materials/Maverick Corporation</td>
<td>71, 85</td>
<td>www.renegadematerials.com</td>
<td>+1 508.579.7888</td>
</tr>
<tr>
<td>Revchem Composites</td>
<td>26</td>
<td>www.revchem.com</td>
<td>+1 800.281.4975</td>
</tr>
<tr>
<td>SAMPE Foundation</td>
<td>87</td>
<td>www.sampe.org</td>
<td>+1 626.521.9460</td>
</tr>
<tr>
<td>Scott Bader North America</td>
<td>84</td>
<td>www.scottbader.com/ na</td>
<td>+1 330.920.4410</td>
</tr>
<tr>
<td>SDI-Talon</td>
<td>84</td>
<td>www.sdindt.com</td>
<td>+1 805.987.7775</td>
</tr>
<tr>
<td>Shimadzu Scientific Instruments</td>
<td>13</td>
<td>www.ssi.shimadzu.com/agx</td>
<td>+1 800.477.1227</td>
</tr>
<tr>
<td>Siltech Corporation</td>
<td>33</td>
<td>www.siltech.com</td>
<td>+1 416.424.4567</td>
</tr>
<tr>
<td>TANITEC Corporation</td>
<td>33</td>
<td>www.tanitec.com</td>
<td>+81 774 88 5665</td>
</tr>
<tr>
<td>Technical Fibre Products Inc.</td>
<td>4</td>
<td>www.tfglobal.com</td>
<td>+1 518.280.8500</td>
</tr>
<tr>
<td>Technology Marketing, Inc.</td>
<td>85</td>
<td>www.mti-slc.com</td>
<td>+1 801.265.0111</td>
</tr>
<tr>
<td>Texas Almet</td>
<td>37</td>
<td>www.texasalmet.com</td>
<td>+1 817.649.7036</td>
</tr>
<tr>
<td>Textile Products</td>
<td>85</td>
<td>www.textileproducts.com</td>
<td>+1 714.761.0401</td>
</tr>
<tr>
<td>Thermal Wave Imaging</td>
<td>85</td>
<td>www.thermalwave.com</td>
<td>+1 248.414.3730</td>
</tr>
<tr>
<td>TMP, A Division of French</td>
<td>35, 85</td>
<td>www.frenchoil.com</td>
<td>+1 937.773.3420</td>
</tr>
<tr>
<td>Torr Technologies, Inc.</td>
<td>81</td>
<td>www.torrtech.com</td>
<td>+1 800.845.4424</td>
</tr>
<tr>
<td>Web Industries, Inc.</td>
<td>19</td>
<td>www.sales@webindustries.com</td>
<td>+1 508.573.3979</td>
</tr>
<tr>
<td>Wichita Tech</td>
<td>61</td>
<td>www.wichitech.com</td>
<td>+1 800.776.4277</td>
</tr>
<tr>
<td>Wyoming Test Fixtures, Inc.</td>
<td>31</td>
<td>wtf@wyomingtestfixtures.com</td>
<td>+1 801.484.5055</td>
</tr>
</tbody>
</table>
The Society for the Advancement of Material and Process Engineering (SAMPE®) is a global professional member society. SAMPE provides information on new materials and processing technology via conferences, exhibitions, technical forums, and publications. As the only technical society encompassing all fields of endeavor in materials and processes, SAMPE provides a unique and valuable network for scientists, engineers, and academicians.

Get immediate access to member benefits when you join SAMPE today.

For most people, creating professional relationships is important. When you join SAMPE, you gain immediate access to benefits valued by thousands of M&P professionals, including:

- **SAMPE Journal** – Subscription to the only peer-reviewed journal on advanced materials and process technologies.
- Digital Library – Unlimited access to over 6,000 peer-reviewed technical papers presented at SAMPE conferences.
- Membership Directory – Connect with members locally or from around the world with our dynamic member search tools.
- Career Center – Find valuable career resources, resume tools, post your resume, and search jobs.
- Discounted admission to SAMPE events.

Join SAMPE Today
www.sampe.org
David L. Young
ADHESIVE PREPREGS FOR COMPOSITE MANUFACTURERS
P.O. Box 264 1366 Norwich Rd.
Plainfield, CT. 06374
PH. 860-564-7817, FAX 860-564-1535
dyoung@prepregs.com
www.prepregs.com

Cincinnati Testing Laboratories
A Subsidiary of Metcut Research Inc.
MACHINING & TESTING OF ADVANCED COMPOSITE MATERIALS
Comprehensive Testing Expertise
• Mechanical • Physical • Thermal
• Environmental • Fatigue
MMC, CMC, & PMC Experience
Email: info@cintestlabs.com
www.cintestlabs.com
1775 Carillon Blvd., Cincinnati, Ohio 45240
Phone: 800/811-9290 • Fax: 513/851-3336

Epoxy and Polyurethane Thermoset Resin Systems
• Service Temperatures Up to 700°F
• Custom Formulations
• Manufacturing Expertise
Manufactured by: Ph: (800) 755-8586, Fax: (651) 451-9728
So. St. Paul, MN 55076
www.epoxi.com, info@epoxi.com

Blended Continuous Filament Thermoplastic and Reinforcement Fibers for Composites
Markets Served
Aerospace, Automotive, Oil/Gas, Sporting Goods
Contact Randy Spencer at 401-828-1100 ext 111 or rspencer@concordiafibers.com
www.concordiafibers.com

COMPOSITE & WIRE MACHINERY, INC.
NEW & REBUILT BRAIDING MACHINE SPECIALISTS
25 Years Experience with N.E. Butt/Wardwell
Jack Denney - President
490 Old Baptist Road, North Kingstown, RI 02852
PHONE (401) 884-4760 • FAX (401) 885-2499

Coast-Line International
Your One Stop Tech Shop
Woven Cloth & Prepreg, Film Adhesives, Sealants, Core Splice, Potting Compound, Hot Bonders, Vacuum Bag & Release Film, Breather, Tooling Materials, Connections, Vacuum Pumps, Infusion Resins, Core Material, Specialty Tapes, Penetrants, Clean Room Consumables
Stocking Locations in NY, GA, MA with Same Day Shipping
Ph: 631-226-0500 • Fax: 631-226-5190
e-mail@coast-lineintl.com • www.coast-lineintl.com

West Coast 310-277-0748 • www.ballyribbon.com
Contact: Leon Bryn
Phone: 610-845-9211 ext. 3083 Fax: 610-845-8813
E-Mail: LeonBryn@ballyribbon.com
Bally Ribbon Mills
20 N. 7th Street, Bally, PA 19503 U.S.A.
ISO-9001 & AS-9100

Composite Polymer Design

Blended Continuous Filament Thermoplastic and Reinforcement Fibers for Composites
Markets Served
Aerospace, Automotive, Oil/Gas, Sporting Goods
Contact Randy Spencer at 401-828-1100 ext 111 or
rsparser@concordiafibers.com
www.concordiafibers.com

www.prepregs.com
www.cintestlabs.com
www.epoxi.com, info@epoxi.com
C. A. Litzler Co., Inc.
4800 W. 160 St., Cleveland, OH USA 44135-2689
Phone: 216.267.8020 • Web Site: www.calitzler.com

National Aerospace Supply Company
Vacuum Bagging Support Materials
Precut Bagging Kits Available
33155 Camino Capistrano Unit C
San Juan Capistrano, CA 92675
Phone (949) 240-6353 Fax (949) 248-5655
www.NationalAerospace.com

NDT Solutions
NDT Solutions
Products and Services
• NDT Equipment & Supplies
• Level 3 Consulting
• Lab & Field Service
• Inspection Systems
• Engineering Support
• Training, Qualification & Certification

Scott Bader North America
3350 N. Filer Avenue, Omaha, NE USA
T: +1 402 397 0600
F: +1 402 397 0609
E: info@scottbader-na.com
www.scottbader.com/na

PMIC
Specialists in Precision Materials Testing

WHAT KIND OF TESTING?
Precision Thermal Expansion
Thermal Conductivity
Moisture Expansion
Specific Heat
Thermal Cycling
Mechanical, Creep, Microyield

WHAT KIND OF MATERIALS?
Carbon fiber products, metals, ceramics, polymers, foams, adhesives, electronic assemblies

WHAT TEMPERATURE RANGE?
20K to over 1,600°C

WHO DO WE SERVE?
PMIC provides testing services to companies worldwide

WHY TEST AT PMIC?
• Cost effective precision testing
• Independent, ISO Accredited, Testing Laboratory
• Absolute confidentiality
• Data and specimen archiving
• Test plan design
• Expert analysis of test results

www.pmiclab.com • 541.753.0607
Partnerships succeed that have a shared vision.
Partnerships create new opportunities not available to any sole group.

SAMPE’s Corporate Partners help fund:
- Bridge Building Contests
- Student Chapter Grants
- Faculty Advisor Meetings
- Student Exchange Programs

Become a SAMPE Corporate Partner today!
Contact Patty Hunt: sampeads@aol.com
Janicki Industries is a global supplier of composite and metal tools for aerospace, industrial, ship building, wind energy, architecture, military and transportation industries. From space ship parts to wind blades to fish tanks, we work on some of the most exciting new technologies in the world.

Production Parts, Tools & Prototypes

State-of-the-Art Facilities
- Total Space 425,000 ft²
- ISO Cleanroom 9,000 ft²
- High-bay; Overhead Cranes

Certified for Aerospace Parts
- AS9100C
- Nadcap
- BAC

9 Janicki 5-Axis NC Mills
- Large-Scale 100ft x 20ft x 8ft
- High Precision +-0.002

Capabilities
- Engineering Services
- Autoclave 12' x 50', 550° F/150psi
- Annealing Furnace
- 1,100 ton press

www.janicki.com
360.856.5143
Imagine it. Then let us help you build it. With our vast range of Divinycell structural foam core solutions we can realize your wildest construction dreams while meeting the specific demands of your application. Together, we can create innovative, reliable and cost-efficient solutions with a small footprint.

A wide range of markets, including aerospace, marine, transport, wind energy, construction and many other industries, already benefits from our structural foam core solutions. The successful combination of durable materials for the most demanding applications and our renowned technical services allow us to make your products stronger, lighter and smarter.

Go stronger, lighter, smarter

Find the ideal Divinycell solution for your application at diabgroup.com

Visit us in Booth M16 at SAMPE Seattle 2017