Assessment of Operating Challenges of Digester Foaming

by Ralph B. “Rusty” Schroedel, Jr., BCEE
Brown and Caldwell
Based Partially on a Survey and Workshops by the
Central States Water Environment Association

Acknowledgements

Jeff Brochtrup, Madison MSD
Randy Wirtz, Strand Associates
Eric Lecuyer, Northern Moraine WRD (previously, Central States Executive Director)

Initial results presented at WEF Residuals and Biosolids Conference, May 2011, Sacramento, CA
Background
Formation of Ad Hoc Committee

• Concerns Expressed at 2009 Annual Meeting
• CSWEA Objective to Better Engage and Serve Operators

• Ad Hoc Committee Developed
 • Selected Chair and Nominated Members
 • Developed Committee Charge

• Committee Developed Survey and Workshop as Goals

• Survey Developed and Performed in Late 2009/Early 2010
 • Web Based
 • Follow Up by Committee Members
History of the CSWEA Digester Foaming Committee’s Efforts

- Committee established after 2009 annual conference
- Initial groundwork in late 2009
- Survey sent out in early 2010
- 1st Workshop – April 2010
- Follow Up Survey
- 2nd Workshop – April 2011
- 3rd Workshop – February 2012
Initial Workshop - April 21, 2010 Identified Typical Causes of Excessive Foaming

• Varying Sludge Loadings
 • Total Sludge Quantity
 • Ratio of Primary Sludge to WAS

• High Ratio of WAS

• Inadequate Mixing

• Nocardia and Microthrix Parvecella

• Inconsistent or High VFAs

• Low Influent Solids Concentration

• Excessive or Fine Bubble Mixing
Survey Results
Brief Survey Summary

• About 216 WWTPs have anaerobic digestion:
 • Illinois: 64
 • Minnesota: 56
 • Wisconsin: 96

• Ad hoc committee developed questionnaire to gauge the extent of anaerobic digester foaming problems at WWTPs

• Follow-up calls and e-mails
Survey – 94 Responses (44%)

- Significant Digester Foaming in Last 10 Years?

- 50 of the 94 Responses
 - 23% (min) of the 216 WWTPs
Survey Responses

• Was Cause of Digester Foaming Determined?

- Yes: 55%
- No: 45%
Survey Trends

- Size of WWTPs

<table>
<thead>
<tr>
<th>Size of WWTPs</th>
<th>Percent of Plants w/ Digester Foaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.0 mgd</td>
<td>6 of 19 (32%)</td>
</tr>
<tr>
<td>1 to 5 mgd</td>
<td>27 of 45 (60%)</td>
</tr>
<tr>
<td>5 to 20 mgd</td>
<td>12 of 24 (50%)</td>
</tr>
<tr>
<td>> 20 mgd</td>
<td>6 of 7 (86%)</td>
</tr>
</tbody>
</table>
Survey Trends

- Type of Biological Treatment

<table>
<thead>
<tr>
<th>Percent of Plants w/ Digester Foaming</th>
<th>Activated Sludge</th>
<th>Trickling Filters</th>
<th>RBCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59%</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>43 of 73</td>
<td>10 of 25</td>
<td>3 of 10</td>
</tr>
</tbody>
</table>
Survey Trends

- Foaming in Activated Sludge?

<table>
<thead>
<tr>
<th>Percent of Plants w/ Digester Foaming</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70%</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>14 of 20</td>
<td>32 of 55</td>
</tr>
</tbody>
</table>
Survey Trends

- Phosphorus Removal

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Percent of Plants w/ Digester Foaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR</td>
<td>30 of 49 (61%)</td>
</tr>
<tr>
<td>BPR</td>
<td>14 of 22 (64%)</td>
</tr>
<tr>
<td>No P Removal</td>
<td>8 of 26 (31%)</td>
</tr>
</tbody>
</table>
Survey Trends

- Nitrogen Removal

<table>
<thead>
<tr>
<th>Percent of Plants w/ Digester Foaming</th>
<th>NH3 Removal</th>
<th>Total N Removal</th>
<th>No N Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>2 of 4</td>
<td>9 of 24</td>
<td></td>
</tr>
</tbody>
</table>
Survey Trends

- Digestion Process

<table>
<thead>
<tr>
<th>Process Type</th>
<th>Percent of Plants w/ Digester Foaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meso Only</td>
<td>56%</td>
</tr>
<tr>
<td>Thermo Only</td>
<td>0 of 1</td>
</tr>
<tr>
<td>TPAD</td>
<td>3 of 7</td>
</tr>
<tr>
<td>Acid-Gas</td>
<td>0 of 3</td>
</tr>
</tbody>
</table>
Survey Trends

- Digester Detention Time
Survey Trends

- Digester Mixing System

<table>
<thead>
<tr>
<th>Percent of Plants w/ Digester Foaming</th>
<th>Gas - Canon</th>
<th>Gas - Lances</th>
<th>Liquid - Pumped Recirc.</th>
<th>Liquid - Draft Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>7 of 10</td>
<td>18 of 28</td>
<td>22 of 36</td>
<td>7 of 21</td>
</tr>
<tr>
<td>64%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Follow Up Activities
Follow Up Survey

• Attempted to Dig a Little Deeper:
 • Many of the same questions as 2010
 • Mixing times, sequence, etc.
 • Heating equipment and methods
 • Feed sludge type, blending, etc.
 • Feeding times, sequence, etc.
 • Hauled waste acceptance
 • VS loading rates
Second Workshop – Survey Responses – Comments – Dealing with Foam

• Lowered our operating level
• Reduced feed rates when it has foam
• Increase Volatile Acid and Alkalinity testing
• \(\text{H}_2\text{S} / \text{CO}_2 \) testing
• Change mixing intervals
• Reduced feed
• Adjust duration of feed
• Adjust removal rates
• Reduced grease pumping
Third Workshop

- February 2012
- Provided more detailed analysis of specific case studies
 - Causes
 - Solutions
- Further Developed and Refined “Mitigation and Adaptation” Concept
Gas Holdup Expands the Volume

No Gas Holdup/Entrainment

With Gas Holdup/Entrainment
Recent OWASA (NC) data suggest low-specific-gravity can be normal / ongoing

<table>
<thead>
<tr>
<th>Digester Stage</th>
<th>Pressure (ft)</th>
<th>Radar (ft)</th>
<th>Calculated Average Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.6</td>
<td>30.4</td>
<td>74%</td>
</tr>
<tr>
<td>2</td>
<td>19.2</td>
<td>23.3</td>
<td>82%</td>
</tr>
<tr>
<td>3</td>
<td>16.2</td>
<td>19.0</td>
<td>85%</td>
</tr>
</tbody>
</table>
Case Histories
Video from Hawaii Shows Rapid Rise in Action
Dublin, Ireland Startup Event – 2001

- Very large gas burp or rapid rise event at startup, when mixing finally brought food and microbiology together.

- No structural damage, but significant portion of digester contents overflowed at top relief hatch, spilling DS over significant portion of plant site.
Extreme Events - Digester Overflows at Marquette City

- River of Digester Overflow – Foam/Biosolids

Marquette City, Michigan
Lillehammer, Norway Digester Cover Break

- Fiberglass cover break in 2005 (vacuum) and 2012 (over-pressure)
- Food-waste digester – “hot” fish waste load suspected in Dec 2012
- De-foamer not used during Dec 2012 event
- Resulting burp/rapid rise plugged PRVs and gas lines – also some debris in the digester
Cover Event in Northern Florida, 2012

• Floating cover digester being started up.

• Tank had significant undigested sludge, then temp brought up to meso.

• Rapid expansion of biology and activity brought major overflows plus tilting and jamming the floating cover – damage and major delay.
Spokane Digester Cover Break in 2004

- Sludge digester with fixed concrete cover
- Cover over-pressurized due to several factors
- Entire cover lifted, crashed, and broke apart
- 1 killed, 2 serious injuries
- RR/burp event plugged pipes – DS spilling out PRVs
- Instrument / SCADA failure
- Recent piping changes may have caused confusion in response
Brightwater WWTP Startup (2012) - King County, Washington

• Tall primary digesters – 65 feet side-water depth

• Rapid Rise events documented starting in early 2012, biggest events when mixing stops (power out)

• Extreme specific gravity change over 6 hour event 0.92 \rightarrow 0.77 (gas holdup). 11 % volume expansion, with overflows going to the secondary digester.
Brightwater WWTP Startup (continued)

• Tanks were built with large overflow and surface wasting capacity
• Even tighter controlled feed to digesters has been implemented (no FOG slugs for now)
• Mixer ramping is highly controlled.
• Radar has been added; operator training improved; and capacitance probe for foam level monitoring
Lab Testing at Bucknell University
(Matt Higgins)

Setup:
• Vertical-oriented digester/reactors
• Visually observe liquid rise/foam
• Mixing with paddle mixer

Procedure:
• Turn mixer off, or other changes
• Measure slurry height over time
• Observe characteristics of RR/foam
• Continuously monitor gas production

Ongoing Testing in 2014
Plant Description:

• This is a 60 mgd plant that has preliminary, primary, and secondary treatment. Solids handling facilities includes DAFT’s, anaerobic digestion, dewatering and incineration.

• Solutions
 • Improve feeding
 • Improve mixing
 • Improve temperature control
Digester No. 2 Case Study

Plant Description:

- This is an 8 mgd plant consists of preliminary, secondary, and tertiary treatment. The solids handling facilities consists of scum thickening, DAFT’s, anaerobic digestion and dewatering.
Digester No. 2 Case Study

Problems:
• Nocardia

Solution:
• Acid-Gas Phased Digestion
Phased Digestion

- Feed
 - Acid Phase Digestion: 1 day
 - Methane Phase Digestion: 10 days
• Overpressurized the fixed covers, ripping connections between the steel cover and concrete wall.

• All 3 digesters had these events during first 2 years of operation.

• Cause seemed to be accumulation of low-SG sludge in the top portion of tanks.
Digester No. 3 Case Study

Problems:
- Feeding methods
- Foam adaptation

Solution:
- Improved feeding methods
- Improved mixing methods
- Digester modifications
EXISTING DIGESTER
MODIFIED DIGESTER
Other Research

Draft Final Report in Review

WERF INFR1SG10
Anaerobic Digester Foaming – Prevention and Control
What Have We Learned from All This?

- Agencies are experiencing significant problems from burps, foaming, and rapid rise/gas holdup
- Information is beginning to be shared in the industry.
- Digester foaming, gas holdup and rapid rise depends on many factors:
 - Digester loading rates (and variability of loading)
 - Sludge characteristics/viscosity
 - Tank shape/configuration
 - Mixing system
 - Piping details (in/out, and overflow)
- Digester startups and process/loading changes often create unstable situations - more susceptible to foam and rapid rise events.
Operator Controls

• Control Feeding
• Monitor Sludge Feed
 • Volatile acids (Below 4,000 mg/L)
 • VS loading rate
 • Consistent feed
• Maintain Temperature
• Provide Good Mixing
Digestion Process Monitoring

• Digester Feed
 • Loading rate
 • Types of feed
 • Feeding times

• Temperature

• Digester Gas Production and Consistency

• VA and Alkalinity
Surface Wasting Improvements

Extend piping to normal operating level using 30- or 36-inch pipe
Cost - Cutting, More Effective Designs

Submerged Fixed Covers

- Mimic egg performance
- Last ~ 50 years
- $\frac{1}{2}$ the cost of Eggs
- Concentrated surface wasting in dome
Rapid Rise will Likely Happen in Highly Loaded Digesters

Address the symptom:

- Try to dampen slug loads/force consistent feed
- Passive relief hatches/collection to designed sludge receiving

Alternative is failed mechanical covers or to fill digester gas piping...
Mitigation and Adaptation

• Mitigation
 • Minimize Feed of Foaming Organisms
 • Proper Feed Control – quantity, frequency, mixture consistency
 • Good Mixing
 • Consistent Temperature

• Adaptation
 • Surface Discharge
 • Surface Removal
 • Foam Suppressant Chemical Feed
 • Foam Trap on Gas Lines
 • Foam Sensor
 • Protection of Pressure/Vacuum Release Valves
 • Cover Design
Questions?