Introduction to Dynamic Buffer Zones (DBZ)

BEST 2 Conference
April 14, 2010

Christian M. Cianfrone, M.A.Sc., P.Eng., Morrison Hershfield Limited
Russell Richman, Ph.D., Assistant Professor, Dept of Architectural Science, Ryerson University
Kim D. Pressnail, Associate Professor, Dept of Civil Engineering, University of Toronto
Presentation Outline

• Introduction to Dynamic Buffer Zones
 What is it? Why use it?
• Advantages and Limitations
• Modes of Operation
• Case Studies
What is a Dynamic Buffer Zone?

“...an area that actively separates the interior and exterior air using pressure differences, in order to prevent them from mixing.”
Why Use a Dynamic Buffer Zone?

1) Prevent bulk moisture migration through air leakage control (traditional use)

2) Heat recovery to reduce space heating requirements (less common)
Advantages & Limitations of a Dynamic Buffer Zone

Advantages:

- Good for new or retrofit
- Heritage
- Relatively inexpensive
- Simple concept
- Easy to commission
- Minimal disruption to interior finishes or exterior cladding

Limitations:

- Requires energy input
- Additional capital
- Difficult to install if no cavity exists (retrofit)
- Contaminants problematic (depending on application)
Two Modes of Operation

“Balloon” System

- Air is pumped into the cavity with no intentional exhaust air
- When pressure drops below set point - fan turns on again

“Exhaust” System

- Supply continuous airflow into the cavity and intentionally exhaust air to maintain pressure at pre-determined level
- How and where the air is exhausted from and to is unique to the building
Ottawa’s Canadian Museum of Nature
Ottawa, Ontario

• Retrofit for Heritage Building
• High interior humidity requirement for exhibits
• Moisture migration into exterior wall deteriorating the mortar between the stones
• DBZ introduced to prevent moisture migration
Butterfly Conservatory
Niagara Falls, Ontario

- Condensation Control
- High temperature and humidity requirement in cold climate
- Butterflies stick to glass and then…
- Nets are traditional solution
- “building within a building”
- DBZ pressurizes between envelopes
Library
Toronto, Ontario

• Mitigation of existing condensation problem
• Lower cost solution
Library

LIBRARY ATRIUM
Library

- Stacks
- Painted GWB
- Open Web Stud
- Cell Glass Insulation
- CIP Concrete Wall
Library

In (+) 24° 40%
Cavity (- -) 24° 40%
Out (-) -18°
Library
Library

24°
40%
30%?
Using Solar Dynamic Buffer Zone Walls to Increase Performance of Air Source Heat Pumps in Cold Climates

BEST 2 Conference
April 14, 2010

Christian M. Cianfrone, M.A.Sc., P.Eng., Morrison Hershfield Limited
Russell Richman, Ph.D., Assistant Professor, Dept of Architectural Science, Ryerson University
Kim D. Pressnail, Associate Professor, Dept of Civil Engineering, University of Toronto
The Goal

• Develop a near passive strategy to reduce heating energy in buildings
• Strategy should be at little to no extra cost
• Strategy should not sacrifice architectural features
The Goal

• Propose Solution – Façade Solar Heat Recovery
• Build an Analytical Model
• Validate the Model (Software, Experiments)
• Assess potential of proposed solution to save energy
• Applications
The Residential Wall

89mm brick

25mm unvented cavity

38mm extruded polystyrene

38mm x 89mm batt filled stud space

12.5mm gypsum board
The DBZ Wall

- 89mm brick
- Shelf Angle
- Variable size vented cavity
- 38mm extruded polystyrene
- 38mm x 89mm batt filled stud space
- 12.5mm gypsum board
- Ambient air intake
- Typical floor construction
- Fan
- Duct to air handler
Heat Transfer Mechanisms

- SW radiation from sun
- LW radiation to sky
- LW radiation to air
- LW radiation to ground
- Ambient-Brick convection
- Radiation exchange between surfaces
- Conduction
- Brick-Airflow Convection
- Sheathing-Airflow Convection
- Interior-Gypsum convection
- Airflow absorbing heat from brick and sheathing
Analytical Model

• 5 Unknown Temperatures
 • Interior/Exterior Brick Surfaces
 • Interior/Exterior Wall Assembly
 • Exit Air
• System of 5 Equations to Solve
Model vs Experimental

- 3 of 4 surface temperatures agreed to within 1°C
- Exit air temperatures agreed to within 1°C
- Accurate Model
Performance Results

Delta T vs Flow Rate

Temperature Rise (°C)

Flow Rate

21 m³/h/m²
36 m³/h/m²
72 m³/h/m²
Thermal Storage

Solar Energy

Heat Recovered
Potential Applications

- Preheating Ventilation Air
- Air Source Heat Pumps
 - Improve heating efficiencies
 - Cold temperature operation
Preheating Ventilation Air

• Analysis using the “analytical model”
• 25-75 kWh/m²/year compared to 150-200 kWh/m²/year for commercial systems (i.e. Solarwall)
• Efficiencies of up to 33% (heat rec. / solar radiation)
Air Source Heat Pumps

Efficiency of ASHP

\[\Delta \text{COP} \]
Air Source Heat Pumps

Heating Capacity of 3-Ton ASHP

Δ Heating Capacity

Heating Capacity (kW)

OAT (°C)
Air Source Heat Pumps

- Reduction in heating energy by 8% due to
 - Higher COP’s with increase in OA temperatures
 - Longer compressor run time (instead of electric heating)
Low Temperature Heat Pumps

- Variable Refrigerant Flow Systems
- Operate down to -15°C
- Capital cost premium
- Still decrease in performance with lower OAT
Conclusions and Recap

• It works! Can preheat air up to 12°C
• Minor modifications to standard construction
• Efficiencies of up to 33% for preheating ventilation
• Can recover up to 70 kWh/m2/year of solar energy for preheating ventilation air
• ASHP improved efficiencies and reduced heating energy by 8%
• Longer compressor run times