Designing Commercial Energy Retrofit for Curtain Walls

Presented at
Building Enclosure Technology and Environmental Council (BETEC)
Symposium on Retrofitting Building Enclosures for Energy Efficiency and Sustainability
Ecobuild America 2009

Dudley G. McFarquhar, PhD, PE (Dr. D)
MGI McFarquhar Group Inc

10 December 2009
Curtain Wall Definition

- A non-load bearing exterior skin (multiple substrates)
- Does not contribute to the structural support of the building
- Provides the air and water tightness of the building exterior
The Importance of the Building Envelope

- Protect against the natural elements
- Key area to focus on contribution and managing energy loads on building
- Maintenance is critical
- The shelf life of usable materials
- Provide aesthetic signatures to buildings
Energy and the Building Envelope

- Need to Control Light Transmittance in Vision Areas
- Maintain insulation at Spandrel Areas
- Limit air and water infiltration
- Need to maintain or reduce mechanical loads on the interior.
Existing Curtain Wall Retrofit Challenges

- Often building is occupied
- Building Owner’s budget
- Consider the age of the building
- Architectural aesthetics
- Site logistics (open or tight space for remedial access)
Further Challenges

- Can elements be removed/replaced from the building?
- Can the remediation be extensive?
- Addressing tenants/employees during remediation?
Design Team Effort

- Paramount to assemble a good team

- Team can be combinations of professionals:
 - Example:
 - Architect, Cladding Consultant, GC, System manufacturer reps (for input)

- Field Input on existing conditions and scheme
Design Approach

- System identification: Stick, Unitized, Panelized, Hybrid
- Review the age of the building
- Review the building usage type
- Review the status of building material types (focusing on gaskets, framing, glazing, sealant)
- Review system framing anchorage.
Consider Aesthetics Also

- Very important element of the process

- Typically there is an opportunity to effectively change an appearance of a building while upgrading energy efficiency.
Curtain Wall Background
Design Tools

- Building Codes
- Industry Standards
- Analytical Mechanics
- Installation Methods

EXPERIENCE & their Lessons !!
Literature Reference

BUILDING CODES
• IBC, ASCE 7
• LOCAL CODES

INDUSTRY STANDARDS
• AA ~ Aluminum Association
 • AAMA
 • GANA
 • ASTM
Curtain Wall Design Considerations

SYSTEM DESIGN

• Framing Elements
• Design Pressures
• Connections
• Air Flow Control
• Controlled Water Flow
• Shop Assembly
• Field Installation
Typical Elevation

*Courtesy of Texas Wall Systems, Dallas, TX
Examples of System Types

Courtesy of Texas Wall Systems, Dallas, TX
Examples of System Types

Butt Glaze
Mullion
Vision

* Courtesy of Texas Wall Systems, Dallas, TX
Examples of System Types

Butt Glaze
Mullion
Spandrel

*Courtesy of Texas Wall Systems, Dallas, TX
Stick System
Curtain Wall Installation Example

Courtesy of AAMA
Unitized/Panelized System
Example of Panel Assemblage

* Courtesy of Old Castle Glass
ANALYSIS

• Stress Analysis
• Finite Element Analysis
• Dynamic Analysis (Blast)
• Wind Tunnel Study
• Testing
• Fracture Mechanics
Thermal Simulation Test
Forces and Movement

Anchors Must Accommodate Movement
Water Infiltration Concerns

- Need to control water infiltration
- Affect the mechanical load for controlling humidity
- Similar for air
Key Curtain Wall Components Related to Energy

- Glazing
- Gaskets
- Sealants
- Framing
- Shading
Types of Glass

- Annealed
- Heat Strengthened
- Tempered

UNITS
- Monolithic Glazing
 - Least efficient
- IG Unit
 - More efficient
- Laminated Unit
 - interlayer added to retain glass
MONOLITHIC GLAZING

- Some older buildings have monolithic glass which is not energy efficient
- Often these lites are not tinted for clearer visibility

INSULATING GLAZING UNITS

- Widely used and effective with tint on the #2 surface to reduce the UV light.
- Flexibility to incorporate different glass combinations to make a unit (ex. Monolithic w/ laminated)
Glazing Remediation

MONOLITHIC GLAZING
- If no elements can be removed, consider the usage of Solar Films
- Reduces the level of UV through the fenestration.
- Replace Monolithic with IG Units where possible.

INSULATING GLAZING UNITS
- Good option to improve performance by adding tint on the #2 surface to reduce the UV light.
- The tint is protected and multiple color options.
- Technology continues to improve and higher performance on glazing units are achieved.
Gaskets

- Used as insulators and bearing surfaces for glazing
- Gaskets made from rubber and can be extruded.
Gasket Problems

AGED PERIMETER GASKETS

- Need to be replaced
- Poor air and water infiltration control

- Age sometimes cause shrinkage
Gasket Remediation

REPLACEMENT OPTIONS

- PRE-MOLDED GASKETS

- SEALANT “wet seal” APPROACH (EXTERIOR).
Sealants

- EXTERIOR APPLIED @ Perimeter Joints
- INTERIOR APPLIED @ Structural Glazing @ Frame Connectivity

REMEDIATION

- Sealant Replacement
- “Wet” Seal application on glazing at glazing perimeter.
Framing

- Difficult to adjust for existing framing
- If framing is being removed, system type must be identified.

REMEDICATION

- Replacement has options: siteline, depth, type
- New systems have thermal improvement with "thermal improved" or "thermal bridge" components
- The rear frame is thermally isolated from the pressure cap.
Framing

- Aluminum extrusions allow a lot of flexibility in adaptation to systems.
- Appendages can be added
- Challenging in existing conditions
Sunshades

- Offers Aesthetic Quality
- Offers energy relief to glazing
- Can be retrofitted on existing framing
- Dependent on the spandrel condition; glazing, stone, precast or metal panels.
- Connections have to be ideally co-ordinated thru caulk joints and waterproofed.
Sunshades

- Note the shading effect of the sunshade on the glazing
- Aesthetics are very important

- Zoom of the shading concept

Courtesy: Corgan
Larger scale shading
Exterior Façade Retrofit
Example #1

High Rise Building in the SW

- Working with interior access
- Option to replace frames
- Option to upgrade elements
Exterior Cladding Retrofit Restraints

- Tight Project site
- Aggressive schedule
- Existing building shell
- Atypical Openings
Existing Conditions

- Loss of Glass at of Tower
- Heavy glass damage
- Temp Closure plates inserted
Existing Conditions

- Loss of Glass at of Tower
- Lower Sloped Section with loss of glass
Existing Conditions

- Interior Column grid at Lower Section ~ glazing removed.

Monolithic Glass
Existing Conditions

- Monolithic Glass ~ Full Height
- Access at the floor
Existing Conditions

- Existing shallow installed frames.

Monolithic Glazing
Exterior Façade Retrofit

Punched Windows

- Tower Crane hoisting packaged frames to floors.
- Bundled Frames located on Floors
Exterior Façade Retrofit
Punched Windows

- Installing new Punch Windows with high performance IG Units
- Individual openings measured.
- View from exterior of glazed openings
- Note the tint on the glazing to reduce UV transmittance
Exterior Façade Retrofit
Punched Windows

- Operable windows at balconies – option for energy savings and ventilation.
- Door and windows sitting on a curb – mitigate water infiltration at sill.
- Swing-out window in some punched openings.
- Ventilation and energy savings option.
Exterior Façade Retrofit
Unitized Curtain Wall

- Installing new Curtain wall
- Utilizing the existing building structure framing
- Unitized system~ Inside Set
- Note the tinted glazing

- View from exterior
Exterior Façade Retrofit
Unitized Curtain Wall

- Interlocking Frames and Gaskets (Air/water control)
- Custom Bayonet Anchor – flexible on modules.
Exterior Façade Retrofit Installation

- Setting from inside allowed flexibility of working anywhere on the building
- Curtain wall and punched window set individually
- Exterior swing stages are other trades.
Transformed Tower

Credit: Corgan
Exterior Façade Retrofit

OLD FAÇADE - OFFICE BLDG

NEW FAÇADE – CONDOMINIUMS/RETAIL
Exterior Façade Retrofit

- Architectural Creativity.

- Upper Tower converted into Condos.

- Lower Section converted into Retail Space.

- Much improved energy consumption

- Limestone clad base.

- Well received by the community.
Exterior Façade Retrofit
Example #2

Credit: Gensler
- Example of retrofit on existing façade in-place
- Introduction of efficient glazing
- Introduction of sunshade features
Exterior Façade Retrofit
Example #3

• Small openings
• Heavy façade
• Aesthetically dated for location

• More light introduced to opening
• Improved aesthetics
• Improved glazing performance

* Courtesy of Trainor Glass
Exterior Façade Retrofit Example #3

New building structure is being installed to create new space where the old building was, as well as tying in the façade type of the adjacent face to the area above the renovated floors.

* Courtesy of Trainor Glass
Summary

- Existing buildings present unique challenges
- Very dependent on the owners objectives
- Major retrofit working with framing removal should utilize a “design team” approach.
- Minor retrofit requires some level of inspection and guidance from a professional.
Careful planning and staging is critical with relation to budgets and schemes.

Technology advancements should be utilized where feasible.

Primary elements related to energy: glazing, gaskets, framing and sealant performance.

Accent elements such as sunshades can be introduced but detailing the interface requires co-ordination and design.
Summary (cont)

- Typically there is an opportunity to effectively change an appearance of a building while upgrading energy efficiency.
Potential Retrofit for Energy

- Glazing replacement
- Framing replacement
- Framing Overclad
- Gasket replacement
- Sealant Replacement (Perimeter and “wet seal”)
- Sunshade elements
- Option for aesthetic upgrade while upgrading energy efficiency.
Aesthetics

- Very important element of the process

- Typically there is an opportunity to effectively change an appearance of a building while upgrading energy efficiency.
Potential Benefits

- Energy reduction
- Improved air / water control
- Improve building appearance while upgrading energy efficiency.
- Potential to incorporate material with improved technology and sustainability.
Thank You

Questions?

Dudley McFarquhar, Ph.D., PE (Dr. D)
MGI McFarquhar Group Inc