2009 NEHRP Recommended Seismic Provisions: Design Examples

FEMA P-751 - September 2012

Prepared by the
National Institute of Building Sciences
Building Seismic Safety Council

For the
Federal Emergency Management Agency
of the Department of Homeland Security
NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA nor any of its employees make any warranty, expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process included in this publication.

The opinions expressed herein regarding the requirements of the International Residential Code do not necessarily reflect the official opinion of the International Code Council. The building official in a jurisdiction has the authority to render interpretation of the code.

This report was prepared under Contract HSFEHQ-09-R-0147 between the Federal Emergency Management Agency and the National Institute of Building Sciences.

For further information on the Building Seismic Safety Council, see the Council’s website — www.bssconline.org — or contact the Building Seismic Safety Council, 1090 Vermont, Avenue, N.W., Suite 700, Washington, D.C. 20005; phone 202-289-7800; fax 202-289-1092; e-mail bssc@nibs.org.
FOREWORD

One of the goals of the Department of Homeland Security’s Federal Emergency Management Agency (FEMA) and the National Earthquake Hazards Reduction Program (NEHRP) is to encourage design and building practices that address the earthquake hazard and minimize the resulting risk of damage and injury. The 2009 edition of the *NEHRP Recommended Seismic Provisions for New Buildings and Other Structures* (FEMA P-750) affirmed FEMA’s ongoing support to improve the seismic safety of construction in this country. The *NEHRP Provisions* serves as a key resource for the seismic requirements in the ASCE/SEI 7 Standard *Minimum Design Loads for Buildings and Other Structures* as well as the national model building codes, the *International Building Code (IBC), International Residential Code (IRC) and NFPA 5000 Building Construction Safety Code*. FEMA welcomes the opportunity to provide this material and to work with these codes and standards organizations.

This product provides a series of design examples that will assist the users of the 2009 *NEHRP Provisions* and the ASCE/SEI 7 standard the *Provisions* adopted by reference.

FEMA wishes to express its gratitude to the authors listed elsewhere for their significant efforts in preparing this material and to the BSSC Board of Direction and staff who made this possible. Their hard work has resulted in a guidance product that will provide important assistance to a significant number of users of the nation’s seismic building codes and their reference documents.

*Department of Homeland Security/
Federal Emergency Management Agency*
PREFACE

This volume of design examples is intended for those experienced structural designers who are relatively new to the field of earthquake-resistant design and to the 2009 NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic Provisions for New Buildings and Other Structures. By extension, it also applies to use of the current model codes and standards because the Provisions is the key resource for updating seismic design requirements in most of those documents including ASCE 7 Standard, Minimum Design Loads for Buildings and Other Structures; and the International Building Code (IBC). Furthermore, the 2009 NEHRP Provisions (FEMA P-750) adopted ASCE7-05 by reference and the 2012 International Building Code adopted ASCE7-10 by reference; therefore, seismic design requirements are essentially equivalent across the Provisions, ASCE7 and the national model code.

The design examples, updated in this edition, reflect the technical changes in the 2009 NEHRP Recommended Provisions. The original design examples were developed from an expanded version of an earlier document (entitled Guide to Application of the NEHRP Recommended Provisions, FEMA 140) which reflected the expansion in coverage of the Provisions and the expanding application of the Provisions concepts in codes and standards. The widespread use of the NEHRP Recommended Provisions in the past and the essential equivalency of ASCE7, the Provisions and the national model codes at present attested to the success of the NEHRP at the Federal Emergency Management Agency and the efforts of the Building Seismic Safety Council to ensure that the nation’s building codes and standards reflect the state of the art of earthquake-resistant design.

In developing this set of design examples, the BSSC initially decided on the types of structures; types of construction and materials; and specific structural elements that needed to be included to provide the reader with at least a beginning grasp of the new requirements and critical issues frequently encountered when addressing seismic design problems. Many of the examples are from the previous edition of the design examples but updated by the authors to illustrate issues or design requirements not covered or that have changed from the past edition. Because it obviously is not possible to present, in a volume of this type, complete building designs for all the situations and features that were selected, only portions of designs have been used.

All users of the Design Examples are recommended to obtain and familiarize themselves with the 2003 and 2009 NEHRP Recommended Provisions (FEMA 450 and FEMA P-750) or ASCE7. Copies of the Provisions are available free of charge from FEMA by calling 1-800-480-2520 (order by FEMA Publication Number). Currently available are the 2003 and 2009 editions as follows:

and publications or write to the BSSC at bssc@nibs.org or at the National Institute of Building Sciences, 1090 Vermont Avenue, NW, Suite 700, Washington, DC 20005 (telephone 202-289-7800).

Updated education/training materials to supplement this set of design examples will be published as a separate FEMA product, *2009 NEHRP Recommended Seismic Provisions: Training Material*, FEMA P-752.

The BSSC is grateful to all those individuals and organizations whose assistance made the 2012 edition of the design examples a reality:

- Ozgur Atlayan, Robert Bachman, Finley A. Charney, Brian Dean, Susan Dowty, John Gillengarten, James Robert Harris, Charles A. Kircher, Suzanne Dow Nakaki, Clinton O. Rex, Frederic R. Rutz, Rafael A. Sabelli, Peter W. Somers, Greg Soules, Adrian Tola Tola and Michael T. Valley for editing the original chapters to prepare this update of the 2006 Edition.

- Robert Pekelnicky for preparing a new Introduction; and Nicolas Luco, Michael Valley and C.B. Crouse for preparing a new chapter on Earthquake Ground Motions for this edition.

- Lawrence A. Burkett, Kelly Cobeen, Finley Charney, Ned Cleland, Dan Dolan, Jeffrey J. Dragovich, Jay Harris, Robert D. Hanson, Neil Hawkins, Joe Maffei, Greg Soules, and Mai Tong for their reviews of the edited, updated and expanded material.

And finally, the BSSC Board is grateful to FEMA Project Officer Mai Tong for his support and guidance and to Deke Smith, Roger Grant and Pamela Towns of the NIBS staff for their efforts preparing the 2012 volume for publication and issuance as an e-document available for download and on CD-ROM.

Jim. W. Sealy, Chairman

BSSC Board of Direction
Table of Contents

FOREWORD .. iii
PREFACE .. iv

1 INTRODUCTION
1.1 EVOLUTION OF EARTHQUAKE ENGINEERING ... 1-3
1.2 HISTORY AND ROLE OF THE NEHRP PROVISIONS .. 1-6
1.3 THE NEHRP DESIGN EXAMPLES .. 1-8
1.4 GUIDE TO USE OF THE PROVISIONS ... 11-1
1.5 REFERENCES ... 1-38

2 FUNDAMENTALS
2.1 EARTHQUAKE PHENOMENA ... 2-3
2.2 STRUCTURAL RESPONSE TO GROUND SHAKING ... 2-5
 2.2.1 Response Spectra .. 2-5
 2.2.2 Inelastic Response ... 2-11
 2.2.3 Building Materials .. 2-14
 2.2.4 Building Systems ... 2-16
 2.2.5 Supplementary Elements Added to Improve Structural Performance 2-17
2.3 ENGINEERING PHILOSOPHY .. 2-18
2.4 STRUCTURAL ANALYSIS ... 2-19
2.5 NONSTRUCTURAL ELEMENTS OF BUILDINGS ... 2-22
2.6 QUALITY ASSURANCE ... 2-23

3 EARTHQUAKE GROUND MOTION
3.1 BASIS OF EARTHQUAKE GROUND MOTION MAPS ... 3-2
 3.1.1 ASCE 7-05 Seismic Maps .. 3-2
FEMA P-751, NEHRP Recommended Provisions: Design Examples

3.1.2 MCE\textsubscript{R} Ground Motions in the Provisions and in ASCE 7-10 .. 3-3
3.1.3 PGA Maps in the Provisions and in ASCE 7-10 ... 3-7
3.1.4 Basis of Vertical Ground Motions in the Provisions and in ASCE 7-10 3-7
3.1.5 Summary ... 3-7
3.1.6 References ... 3-8

3.2 DETERMINATION OF GROUND MOTION VALUES AND SPECTRA .. 3-9
3.2.1 ASCE 7-05 Ground Motion Values ... 3-9
3.2.2 2009 Provisions Ground Motion Values ... 3-10
3.2.3 ASCE 7-10 Ground Motion Values ... 3-11
3.2.4 Horizontal Response Spectra .. 3-12
3.2.5 Vertical Response Spectra ... 3-13
3.2.6 Peak Ground Accelerations ... 3-14

3.3 SELECTION AND SCALING OF GROUND MOTION RECORDS ... 3-14
3.3.1 Approach to Ground Motion Selection and Scaling ... 3-15
3.3.2 Two-Component Records for Three Dimensional Analysis .. 3-24
3.3.3 One-Component Records for Two-Dimensional Analysis .. 3-27
3.3.4 References ... 3-28

4 STRUCTURAL ANALYSIS

4.1 IRREGULAR 12-STORY STEEL FRAME BUILDING, STOCKTON, CALIFORNIA 4-3
4.1.1 Introduction .. 4-3
4.1.2 Description of Building and Structure ... 4-3
4.1.3 Seismic Ground Motion Parameters ... 4-4
4.1.4 Dynamic Properties .. 4-8
4.1.5 Equivalent Lateral Force Analysis .. 4-11
4.1.6 Modal Response Spectrum Analysis .. 4-29
4.1.7 Modal Response History Analysis ... 4-39
4.1.8 Comparison of Results from Various Methods of Analysis .. 4-50
4.1.9 Consideration of Higher Modes in Analysis .. 4-53
4.1.10 Commentary on the ASCE 7 Requirements for Analysis ... 4-56

4.2 SIX-STORY STEEL FRAME BUILDING, SEATTLE, WASHINGTON 4-57
4.2.1 Description of Structure ... 4-57
4.2.2 Loads ... 4-60
4.2.3 Preliminaries to Main Structural Analysis ... 4-64
4.2.4 Description of Model Used for Detailed Structural Analysis .. 4-72
4.2.5 Nonlinear Static Analysis .. 4-94
4.2.6 Response History Analysis.. 4-109
4.2.7 Summary and Conclusions.. 4-134

5 FOUNDATION ANALYSIS AND DESIGN
5.1 SHALLOW FOUNDATIONS FOR A SEVEN-STORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA .. 5-3
 5.1.1 Basic Information... 5-3
 5.1.2 Design for Gravity Loads.. 5-8
 5.1.3 Design for Moment-Resisting Frame System ... 5-11
 5.1.4 Design for Concentrically Braced Frame System .. 5-16
 5.1.5 Cost Comparison... 5-24
5.2 DEEP FOUNDATIONS FOR A 12-STORY BUILDING, SEISMIC DESIGN CATEGORY D .. 5-25
 5.2.1 Basic Information... 5-25
 5.2.2 Pile Analysis, Design and Detailing ... 5-33
 5.2.3 Other Considerations... 5-47

6 STRUCTURAL STEEL DESIGN
6.1 INDUSTRIAL HIGH-CLEARANCE BUILDING, ASTORIA, OREGON 6-3
 6.1.1 Building Description... 6-3
 6.1.2 Design Parameters... 6-6
 6.1.3 Structural Design Criteria .. 6-7
 6.1.4 Analysis... 6-10
 6.1.5 Proportioning and Details .. 6-16
6.2 SEVEN-STORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA 6-40
 6.2.1 Building Description... 6-40
 6.2.2 Basic Requirements.. 6-42
 6.2.3 Structural Design Criteria .. 6-44
 6.2.4 Analysis and Design of Alternative A: SMF .. 6-46
 6.2.5 Analysis and Design of Alternative B: SCBF .. 6-60
 6.2.6 Cost Comparison... 6-72
6.3 TEN-STORY HOSPITAL, SEATTLE, WASHINGTON ... 6-72
 6.3.1 Building Description... 6-72
 6.3.2 Basic Requirements.. 6-76
 6.3.3 Structural Design Criteria .. 6-78
 6.3.4 Elastic Analysis... 6-80
6.3.5 Initial Proportioning and Details .. 6-86
6.3.6 Nonlinear Response History Analysis .. 6-93

7 REINFORCED CONCRETE

7.1 SEISMIC DESIGN REQUIREMENTS .. 7-7
 7.1.1 Seismic Response Parameters ... 7-7
 7.1.2 Seismic Design Category .. 7-8
 7.1.3 Structural Systems .. 7-8
 7.1.4 Structural Configuration .. 7-9
 7.1.5 Load Combinations .. 7-9
 7.1.6 Material Properties .. 7-10

7.2 DETERMINATION OF SEISMIC FORCES .. 7-11
 7.2.1 Modeling Criteria ... 7-11
 7.2.2 Building Mass .. 7-12
 7.2.3 Analysis Procedures ... 7-13
 7.2.4 Development of Equivalent Lateral Forces 7-13
 7.2.5 Direction of Loading ... 7-19
 7.2.6 Modal Analysis Procedure ... 7-20

7.3 DRIFT AND P-DELTA EFFECTS .. 7-21
 7.3.1 Torsion Irregularity Check for the Berkeley Building 7-21
 7.3.2 Drift Check for the Berkeley Building .. 7-23
 7.3.3 P-delta Check for the Berkeley Building .. 7-27
 7.3.4 Torsion Irregularity Check for the Honolulu Building 7-29
 7.3.5 Drift Check for the Honolulu Building ... 7-29
 7.3.6 P-Delta Check for the Honolulu Building ... 7-31

7.4 STRUCTURAL DESIGN OF THE BERKELEY BUILDING 7-32
 7.4.1 Analysis of Frame-Only Structure for 25 Percent of Lateral Load 7-33
 7.4.2 Design of Moment Frame Members for the Berkeley Building 7-37
 7.4.3 Design of Frame 3 Shear Wall ... 7-60

7.5 STRUCTURAL DESIGN OF THE HONOLULU BUILDING 7-66
 7.5.1 Compare Seismic Versus Wind Loading ... 7-66
 7.5.2 Design and Detailing of Members of Frame 1 7-69

8 PRECAST CONCRETE DESIGN

8.1 HORIZONTAL DIAPHRAGMS .. 8-4
 8.1.1 Untopped Precast Concrete Units for Five-Story Masonry Buildings Located in Birmingham, Alabama and New York, New York .. 8-4
Table of Contents

8.1.2 Topped Precast Concrete Units for Five-Story Masonry Building Located in Los Angeles, California (see Sec. 10.2) .. 8-18

8.2 THREE-STORY OFFICE BUILDING WITH INTERMEDIATE PRECAST CONCRETE SHEAR WALLS ... 8-26
8.2.1 Building Description .. 8-27
8.2.2 Design Requirements .. 8-28
8.2.3 Load Combinations .. 8-29
8.2.4 Seismic Force Analysis ... 8-30
8.2.5 Proportioning and Detailing ... 8-33

8.3 ONE-STORY PRECAST SHEAR WALL BUILDING .. 8-45
8.3.1 Building Description .. 8-45
8.3.2 Design Requirements .. 8-48
8.3.3 Load Combinations .. 8-49
8.3.4 Seismic Force Analysis ... 8-50
8.3.5 Proportioning and Detailing ... 8-52

8.4 SPECIAL MOMENT FRAMES CONSTRUCTED USING PRECAST CONCRETE 8-65
8.4.1 Ductile Connections .. 8-65
8.4.2 Strong Connections ... 8-67

9 COMPOSITE STEEL AND CONCRETE
9.1 BUILDING DESCRIPTION .. 9-3
9.2 PARTIALLY RESTRAINED COMPOSITE CONNECTIONS ... 9-7
9.2.1 Connection Details .. 9-7
9.2.2 Connection Moment-Rotation Curves ... 10
9.2.3 Connection Design ... 9-13
9.3 LOADS AND LOAD COMBINATIONS ... 9-17
9.3.1 Gravity Loads and Seismic Weight ... 9-17
9.3.2 Seismic Loads ... 9-18
9.3.3 Wind Loads ... 9-19
9.3.4 Notional Loads ... 9-19
9.3.5 Load Combinations ... 20
9.4 DESIGN OF C-PRMF SYSTEM ... 9-21
9.4.1 Preliminary Design .. 9-21
9.4.2 Application of Loading .. 9-22
9.4.3 Beam and Column Moment of Inertia 9-23
9.4.4 Connection Behavior Modeling .. 9-24
9.4.5 Building Drift and P-delta Checks ... 9-24
10 MASONRY

10.1 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA

10.1.1 Building Description

10.1.2 Design Requirements

10.1.3 Load Combinations

10.1.4 Seismic Forces

10.1.5 Side Walls

10.1.6 End Walls

10.1.7 In-Plane Deflection – End Walls

10.1.8 Bond Beam – Side Walls (and End Walls)

10.2 FIVE-STORY MASONRY RESIDENTIAL BUILDINGS IN BIRMINGHAM, ALABAMA; ALBUQUERQUE, NEW MEXICO; AND SAN RAFAEL, CALIFORNIA

10.2.1 Building Description

10.2.2 Design Requirements

10.2.3 Load Combinations

10.2.4 Seismic Design for Birmingham 1

10.2.5 Seismic Design for Albuquerque

10.2.6 Birmingham 2 Seismic Design

10.2.7 Seismic Design for San Rafael

10.2.8 Summary of Wall D Design for All Four Locations

11 WOOD DESIGN

11.1 THREE-STORY WOOD APARTMENT BUILDING, SEATTLE, WASHINGTON

11.1.1 Building Description

11.1.2 Basic Requirements

11.1.3 Seismic Force Analysis

11.1.4 Basic Proportioning

11.2 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA

11.2.1 Building Description
Table of Contents

11.2.2 Basic Requirements .. 11-31
11.2.3 Seismic Force Analysis .. 11-33
11.2.4 Basic Proportioning of Diaphragm Elements .. 11-34

12 SEISMICALLY ISOLATED STRUCTURES

12.1 BACKGROUND AND BASIC CONCEPTS ... 12-4
12.1.1 Types of Isolation Systems .. 12-4
12.1.2 Definition of Elements of an Isolated Structure .. 12-5
12.1.3 Design Approach ... 12-6
12.1.4 Effective Stiffness and Effective Damping ... 12-7

12.2 CRITERIA SELECTION ... 12-7

12.3 EQUIVALENT LATERAL FORCE PROCEDURE ... 12-9
12.3.1 Isolation System Displacement ... 12-9
12.3.2 Design Forces .. 11

12.4 DYNAMIC LATERAL RESPONSE PROCEDURE .. 12-15
12.4.1 Minimum Design Criteria .. 12-15
12.4.2 Modeling Requirements .. 12-16
12.4.3 Response Spectrum Analysis .. 12-18
12.4.4 Response History Analysis ... 12-18

12.5 EMERGENCY OPERATIONS CENTER USING DOUBLE-CONCAVE
FRICITION PENDULUM BEARINGS, OAKLAND, CALIFORNIA .. 12-21
12.5.1 System Description ... 12-22
12.5.2 Basic Requirements .. 12-25
12.5.3 Seismic Force Analysis ... 12-34
12.5.4 Preliminary Design Based on the ELF Procedure .. 12-36
12.5.5 Design Verification Using Nonlinear Response History Analysis 12-51
12.5.6 Design and Testing Criteria for Isolator Units ... 12-61

13 NONBUILDING STRUCTURE DESIGN

13.1 NONBUILDING STRUCTURES VERSUS NONSTRUCTURAL COMPONENTS 13-4
13.1.1 Nonbuilding Structure ... 13-5
13.1.2 Nonstructural Component .. 13-6

13.2 PIPE RACK, OXFORD, MISSISSIPPI ... 13-6
13.2.1 Description ... 13-7
13.2.2 Provisions Parameters ... 13-7
13.2.3 Design in the Transverse Direction .. 13-8
13.2.4 Design in the Longitudinal Direction .. 13-11
13.3 STEEL STORAGE RACK, OXFORD, MISSISSIPPI .. 13-13
 13.3.1 Description .. 13-13
 13.3.2 Provisions Parameters .. 13-14
 13.3.3 Design of the System ... 13-15

13.4 ELECTRIC GENERATING POWER PLANT, MERNYA, WYOMING 13-17
 13.4.1 Description .. 13-17
 13.4.2 Provisions Parameters .. 13-19
 13.4.3 Design in the North-South Direction .. 13-20
 13.4.4 Design in the East-West Direction .. 13-21

13.5 PIER/WHARF DESIGN, LONG BEACH, CALIFORNIA .. 13-21
 13.5.1 Description .. 13-21
 13.5.2 Provisions Parameters .. 13-22
 13.5.3 Design of the System ... 13-23

13.6 TANKS AND VESSELS, EVERETT, WASHINGTON ... 13-24
 13.6.1 Flat-Bottom Water Storage Tank ... 13-25
 13.6.2 Flat-Bottom Gasoline Tank .. 13-28

13.7 VERTICAL VESSEL, ASHPORT, TENNESSEE .. 13-31
 13.7.1 Description .. 13-31
 13.7.2 Provisions Parameters .. 13-32
 13.7.3 Design of the System ... 13-33

14 DESIGN FOR NONSTRUCTURAL COMPONENTS

14.1 DEVELOPMENT AND BACKGROUND OF THE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS .. 14-3
 14.1.1 Approach to Nonstructural Components .. 14-3
 14.1.2 Force Equations ... 14-4
 14.1.3 Load Combinations and Acceptance Criteria 14-5
 14.1.4 Component Amplification Factor ... 14-6
 14.1.5 Seismic Coefficient at Grade ... 14-7
 14.1.6 Relative Location Factor .. 14-7
 14.1.7 Component Response Modification Factor .. 14-7
 14.1.8 Component Importance Factor .. 14-7
 14.1.9 Accommodation of Seismic Relative Displacements 14-8
 14.1.10 Component Anchorage Factors and Acceptance Criteria 14-9
 14.1.11 Construction Documents .. 14-9

14.2 ARCHITECTURAL CONCRETE WALL PANEL .. 14-10
Table of Contents

14.2.1 Example Description ... 14-10
14.2.2 Design Requirements ... 14-12
14.2.3 Spandrel Panel ... 14-12
14.2.4 Column Cover ... 14-19
14.2.5 Additional Design Considerations .. 14-20

14.3 HVAC FAN UNIT SUPPORT ... 14-21
14.3.1 Example Description ... 14-21
14.3.2 Design Requirements ... 14-22
14.3.3 Direct Attachment to Structure .. 14-23
14.3.4 Support on Vibration Isolation Springs 14-26
14.3.5 Additional Considerations for Support on Vibration Isolators 14-31

14.4 ANALYSIS OF PIPING SYSTEMS .. 14-33
14.4.1 ASME Code Allowable Stress Approach 14-33
14.4.2 Allowable Stress Load Combinations ... 14-34
14.4.3 Application of the Standard .. 14-36

14.5 PIPING SYSTEM SEISMIC DESIGN ... 14-38
14.5.1 Example Description ... 14-38
14.5.2 Design Requirements ... 14-43
14.5.3 Piping System Design ... 14-45
14.5.4 Pipe Supports and Bracing ... 14-48
14.5.5 Design for Displacements .. 14-53

14.6 ELEVATED VESSEL SEISMIC DESIGN .. 14-55
14.6.1 Example Description ... 14-55
14.6.2 Design Requirements ... 14-58
14.6.3 Load Combinations .. 14-60
14.6.4 Forces in Vessel Supports ... 14-60
14.6.5 Vessel Support and Attachment .. 14-62
14.6.6 Supporting Frame ... 14-65
14.6.7 Design Considerations for the Vertical Load-Carrying System 14-69

A THE BUILDING SEISMIC SAFETY COUNCIL