Pharmacokinetics, Pharmacodynamics: Getting Back to Basics in Choosing and Prescribing Medications

Margaret A. Fitzgerald, DNP, FNP-BC, NP-C, FAANP, CSP, FAAN, DCC
President, Fitzgerald Health Education Associates, Inc.
North Andover, MA
Family Nurse Practitioner, Adjunct Faculty, Family Practice Residency Greater Lawrence (MA) Family Health Center
Member, Pharmacy and Therapeutics Committee Neighborhood Health Plan, Boston, MA

Objectives

● Upon completion of the learning activity the participant will be able to:
 − Identify the basic principles of drug absorption, distribution, and elimination and their relationship to clinical pharmacokinetics.
 − Describe select pharmacodynamic (PD) principles as these apply to safe prescribing.

Objectives

(continued)

● Upon completion of the learning activity the participant will be able to:
 (cont.)
 − Recall the importance of cytochrome p 450 and other influences in drug interactions.
 − Explain the importance of the aforementioned parameters used to design a safe plan of pharmacologic care.

Key Pharm Principles

Pharmacology Defined

● The study of substances that interact with living systems through chemical processes, especially by binding to regulatory molecules and activating or inhibiting normal body processes.
 − Source: Katzung, 2012

Pharmacodynamics (PD)

● Study of biochemical and physiological effects of drugs
 − What the drug does to the body and/or disease
Pharmacodynamics
True or false?
● The pharmacodynamic profile of a medication is unchanged over the lifespan.

Pharmacokinetics (PK)
● What the body does to the drug
● Includes
 – Absorption
 – Distribution
 – Biotransformation (metabolism)
 – Excretion of drugs

Pharmacokinetics (PK)
True or false?
● Age and gender significantly impact a medication’s pharmacokinetics.

Fick’s Law
● The tendency for molecules to move in the direction from higher concentration to lower concentration via random molecular motion
● Typically occurs across a membrane or other permeable barrier

Examples of These Permeable Membranes
● Blood-brain
● Mammary
● Placenta
● Cell membrane
● Vessels

Absorption Principles
● Passive diffusion
 – From area of higher to lower concentration
 – Most common form of drug diffusion
Absorption Principles

Why can't the following drugs be given orally?

- Even if you could protect the medication from stomach acid...
 - Unfractionated heparin
 - MW=40,000-50,000 d
 - Insulin
 - MW=5,500 d
 - LWMH
 - MW=8,000 d

For Oral Drug Absorption

- Proper molecular weight
 - <1000, most 250–600 daltons
- Lipid soluble substance
 - To pass through gut wall

For Oral Drug Absorption (continued)

- Small intestine functional
 - Due to large surface area, major point of GI absorption

T ½

- Time required for the amount of drug in the body to be reduced by ½
 - 3-5 T ½ needed to reach steady state
 - 3-5 drug-free T ½ needed to eliminate drug from body

What % is left of original drug dose?

- 1 T ½
 - 50% left
- 2 T ½
 - 50% of 50%=25% left
- 3 T ½
 - 50% of 50% of 50%=12.5% left
- 4 T ½
 - 50% of 50% of 50% of 50%=6.25% left
- 5 T ½
 - 50% of 50% of 50% of 50% of 50%=3.125% left

True or false?

- The T ½ of a medication is a predictable number regardless of the patient’s age, gender, and overall state of health.
T ½ (hours)

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>T ½ (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaleplon (Sonata®)</td>
<td>1</td>
</tr>
<tr>
<td>Zolpidem (Ambien®)</td>
<td>2.5</td>
</tr>
<tr>
<td>Triazolam (Halcion®)</td>
<td>T ½</td>
</tr>
<tr>
<td>Eszopiclone (Lunesta®)</td>
<td>T ½</td>
</tr>
<tr>
<td>Temazepam (Restoril®)</td>
<td>T ½</td>
</tr>
<tr>
<td>Estazolam (Prosom®)</td>
<td>T ½</td>
</tr>
<tr>
<td>Quazepam (Doral®)</td>
<td>38</td>
</tr>
<tr>
<td>Flurazepam (Dalmame®)</td>
<td>110</td>
</tr>
</tbody>
</table>

All brand names are the property of their respective owners.

Dose Equiv (mg)	T ½ (h)
Alprazolam (Xanax®) | 0.5 | 6-20
Chlordiazepoxide (Librium®) | 10 | 30-100
Clonazepam (Klonopin®) | 0.25 | 18-50
Clorazepate (Tranxene®) | 7.5 | 30-100
Diazepam (Valium®) | 5 | 30-100
Lorazepam (Ativan®) | 1 | 10-20
Oxazepam (Serax®) | 15 | 8-12

Does drug effect exceed 3-5 T ½?
- **Aspirin**
 - T ½ = 0.25 h
 - Effect on platelet function
 - 8-9 d

Clinical Examples
- **Levotyroxine**
 - T ½ = 7 d
 - 5 T ½ = 35 d
 - When is TSH checked after dose change?
- **Penicillin**
 - T ½ = 1-2 h
 - 5 T ½ = 5-10 h

Area Under the Curve (AUC)
- Area under the plot of drug plasma concentration against time after a single dose drug administration

Tmax, Cmax
- **Tmax**
 - Time to maximum drug level observed
- **Cmax**
 - Maximum or peak concentration of a drug observed after its administration
 - Clinical significance?
Immediate vs. Sustained Release Morphine

Insulin PK Curves
What is potential problem when insulin is at Cmax?

You see a woman with a chief complaint of dysmenorrhea.

- You can give her one, dose appropriate tablet of any of the following. Which is the best choice?
 A. Naproxen (Naprosyn®)
 B. Naproxen sodium (Aleve®, Anaprox®)
 C. Enteric coated naproxen

In Healthy Volunteers

- Time to Cmax of naproxen forms
 - Naproxen sodium=1 h
 - Naproxen=1.9 h
 - EC naproxen=4 h

How Drugs Cross Cell Membranes

- Passive diffusion
 - Across the gradient
 - Water-soluble via aqueous channels in cell membrane
 - Lipid-soluble through the membrane itself

How Drugs Cross Cell Membranes (continued)

- Active transport
 - Active movement of a drug or ion across a membrane against its concentration gradient. This requires energy, is saturable, and is affected by competitive inhibitors.
Clearance

- Volume of body fluid from which the chemical is completely removed by biotransformation and/or excretion
 - Renal clearance = Water soluble
 - Hepatic clearance = Fat soluble

What does the body want to do to drugs?

- Hang on to these foreign substances?
- Get rid of the “invader” as quickly as possible?

Biotransformation Sites

- Primary
 - Liver
- Less active but clinically important
 - GI tract
 - Lung
 - Skin
 - Kidney

Biotransformation

- Metabolism (biotransformation)
 - The process by which the body modifies or alters the chemical structure of the drug
 - Often to allow for urinary excretion
 - Prodrug (inactive compounds) is transformed to active metabolite.

Medications

Prodrug to Active Metabolite

- Amitriptyline ---> nortriptyline
- Codeine ---> morphine
- Primidone ---> phenobarbital
- Valacyclovir ---> acyclovir
- Heroin ---> morphine
- Levodopa ---> dopamine

Role of Hepatic Function and Drug Metabolism

- Will hepatic impairment potentially lead to:
 - Elevated drug levels?
 - Reduced levels of active metabolites?
First Pass Effect

- Biotransformation and/or excretion of oral drug by hepatic mechanisms prior to entering GI tract are transported to interact with receptors in target tissues.

First Pass Effect (aka Pre-systemic Elimination) (continued)

- Drugs absorbed from the GI tract pass through the portal venous system then through the liver and finally into the systemic circulation.
- Extensive hepatic metabolism/extraction result in minimal drug delivery to the systemic circulation for certain agents.

First Pass Effect (continued)

- Drugs with large first pass effect exhibit significant differences in pharmacological effects comparing oral vs. IV administration.

Compare Oral vs. Parenteral Dose

- Sumatriptan
 - Oral
 - Parenteral
- Levoﬂoxacin (CAP dose)
 - Oral
 - Parenteral

True or false?

- Regardless of route of administration, all medications undergo first pass effect.

Bioavailability

- Percent of dose enter systemic circulation after administration of a given dosage form
 - Lower bioavailability
 - Lovastatin
 - Higher bioavailability
 - Atorvastatin
Statin vs. Statin
McTaggart F, et al.
Am J Cardiol. 2001;87(suppl):28B-32B.

<table>
<thead>
<tr>
<th>Statin Type</th>
<th>T ½</th>
<th>Bioavailability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosuvastatin</td>
<td>20 h</td>
<td>20%</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>1-2 h</td>
<td><5%</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>14 h</td>
<td>14%</td>
</tr>
<tr>
<td>Fluvastatin</td>
<td>1-2 h</td>
<td>24%</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>1-2 h</td>
<td>17%</td>
</tr>
</tbody>
</table>

Lipophilic vs. Hydrophilic

- Most drugs are designed to be lipophilic to allow for absorption and cell membrane penetration.
- These products must be changed to a hydrophilic metabolite to allow for excretion.

CYP450 Drug Metabolism

- The major process in which drugs are converted from lipophilic to hydrophilic
- This is also a common source of drug-drug interactions.

Biotransformation Sites Via CYP 450

- Liver
- Kidney
- Placenta
- Lung
- Plasma
- Intestinal mucosa

Cytochromes P450 (CYP)

- Important to drug metabolism
 - CYP1A2
 - CYP2C9
 - CYP2C19
 - CYP2D6
 - CYP2E1
 - CYP3A4
- A source of pharmacokinetic DI
Proportion of Medications Metabolized by Select CYP450 Isoenzymes

CYP 1A2
15%

CYP 2C9/19
13%

CYP 2D6
25%

CYP 3A4
47%

Katzung, 2012.

Drug Interactions: Malpractice Trigger!

● CYP 450 Drug-metabolizing isoenzymes: A potential source of drug-drug interactions

Definition Clinical example
Inhibitor | Block the activity of the isoenzyme, limiting substrate excretion, allowing increase in substrate levels, and possible risk of substrate-induced toxicity

| Substrate | Clinical example |
| Substrate | CYP 450 3A4 substrates: Sildenafil (Viagra®), atorvastatin, simvastatin, venlafaxine (Effexor®), alprazolam (Xanax®), others |

Does the “no statin with grapefruit juice” warning extend to all in the class?

CYP450 Substrates

● CYP450 3A4
 – Atorvastatin
 – Lovastatin
 – Simvastatin

● CYP450 2C9
 – Pitavastatin
 – Rosuvastatin

● Not metabolized by CYP450
 – Pravastatin
Caution: DI of Select Statins and Clarithromycin

- “Clarithromycin significantly (p < 0.001) increased the AUC and Cmax of all 3 statins (atorvastatin, lovastatin, simvastatin {CYP 3A4 substrates}), most markedly simvastatin (approximately 10-fold increase in AUC)...”

CYP450 3A4 Inducer

- St. John’s wort
 - Cyclosporine
 - Result- Transplanted organ rejection
 - Digoxin
 - Decreased digoxin levels by day 10

- Indinavir (many other antiretrovirals)
 - AUC decreased by 57%
 - Extrapolated 8-h trough by 81%
 - Result
 - Increased HIV viral load

St. John’s Wort: CYP3A4 Inducer

- Indinavir (many other antiretrovirals)
 - AUC decreased by 57%
 - Extrapolated 8-h trough by 81%
 - Result
 - Increased HIV viral load

“But that St. John’s wort really works”...

- St. John’s wort
 - States the 70 yo man with heart failure who is taking digoxin.
 - Has been taking two capsules of St. John’s wort per day for the past 5 years with no evidence of loss of digoxin effect.

“But that St. John’s wort really works...” (continued)

- What advise should you give?
 1) Stop the St. John’s wort immediately.
 2) Taper the St. John’s wort over the next 2 weeks.
 3) Continue to take the St. John’s wort with certain additional advice.
CYP450 Substrates

- CYP450 3A4
 - Atorvastatin
 - Lovastatin
 - Simvastatin
- CYP450 2C9
 - Pitavastatin
 - Rosuvastatin
- Not metabolized by CYP450
 - Pravastatin

CYP1A2

- 70 year-old woman with UTI
 - On ciprofloxacin
 - CYP 1A2 inhibitor
 - Feeling better but cannot sleep
 - “The antibiotic is keeping me awake.”
 - Drinks 4-5 cups of coffee per day
 - Caffeine=CYP 1A2 substrate

Chemical/Pharmacokinetic DI

- 48 year-old woman with IDA
- Taking oral ferrous sulfate
 - Develops UTI
 - Placed on oral ciprofloxacin
 - Remains symptomatic at 72 hours into treatment
 - Results=Urine culture + E. coli sensitive to ciprofloxacin

Inactivation of Antimicrobial Effect Via Chelation

- Fluoroquinolones
 - All –floxacin suffix antimicrobials
 - 60-70% reduction in –floxacin dose
 - When taken with metals such as iron, calcium (potential with dairy products), magnesium, aluminum
 - Separate in stomach from metals by =>2 hours
 - Ciprofloxacin PI

Other Antimicrobials

- Tetracycline forms including doxycycline, minocycline
 - When taken with metals such as iron, calcium (potential with dairy products), magnesium, aluminum
 - Separate in stomach from metals by =>2 hours

Decreased Absorption when Taken with Food

- Digoxin
 - When taken with high fiber food
 - Wheat bran, rolled oats, sunflower seeds
 - Separate by >2-4 h or consistently take w/above
- Bisphosphonates
 - When taken with any liquid other than water or with food
Increased Absorption when Taken with Food

- Nitrofurantoin (Macrodantin®, Macrobid®)
 - 200-400% increase due to delayed emptying, increased time to dissolve
- Sertraline (Zoloft®)
 - ~33% increase in dose absorbed

Special Considerations Enteral Feedings

- Contains Ca+, other metals, protein
- Binds to components of feeding
 - Potential decrease absorption
 - Chelation

Special Considerations Enteral Feedings (continued)

- Phenytoin suspension
 - 71.6% dose absorption reduction w/ continuous feeding
 - If continuous feeding required, increase dose accordingly
- FQ antimicrobials
 - 27-67% reduction in mean bioavailability

Questions? Comments?

Resources

End of Presentation!
Thank you for your time and attention.

Margaret A. Fitzgerald, DNP, FNP-BC, NP-C, FAANP, CSP, FAAN, DCC
Website: www.fhea.com E-mail: cs@fhea.com