Atrial Fibrillation Management Across the Spectrum of Illness

Barbara Birriel, MSN, ACNP-BC, FCCM
The Pennsylvania State University

Disclosures
- NONE

Objectives
- Discuss the pathophysiology, diagnosis, and management of atrial fibrillation
 - Outpatient
 - Inpatient
 - Critical care

AF
- Over 2 million people in US
- Increases with age
 - 10% of population over 80 yo
- Morbidity
 - 15% of strokes; leading cause of embolic strokes
 - 66% increase in hospitalizations over 20 years
 - Increased risk of heart failure
 - Increased all cause mortality

Is it different in acute care?
- SOMETIMES
 - Presentation
 - Pathophysiology
 - Workup
 - Treatment
 - Follow-up

“Typical” AF
PRESENTATION
- Office or Emergency Department
 - Palpitations / fast pulse
 - Shortness of breath
 - Decreased activity / exercise tolerance
 - Lightheadedness / near syncope
 - Chest pain
“Typical” AF Presentation

- Physical Exam
 - Irregularly irregular pulse
 - Pulse rate may not equal heart rate
 - Variable S1
 - JVP

“Typical” AF Presentation

“Typical” AF Pathophysiology

AF Classification

- Paroxysmal – end <7 days
- Persistent – last > 7 days
 - May terminate on its own or by cardioversion
- Permanent - > 1 year and cardioversion has not been attempted or failed
- Lone AF – any of the above without structural heart disease
- Only applies to AF unrelated to a reversible cause

“Typical” AF Pathophysiology

“Typical” AF Risk Factors

- Age > 60 (Dramatically in age >80)
- Valvular heart disease
- Hypertension
- Coronary disease
 - Post CABG surgery
- Long standing pulmonary disease (e.g. COPD)
- Hyperthyroidism
- Drugs: ETOH, Theophylline, Albuterol, Ephedra, Cocaine, Methamphetamine
“Typical” AF WORK-UP

- ECG
- Echocardiogram
- Pharmacologic nuclear stress test
 - Or cardiac catheterization
- Holter monitor or mobile telemetry
 - If dysrhythmia is paroxysmal
- Thyroid panel

“Typical” AF TREATMENT

- Rate control vs. rhythm control

Presumed Benefits of Maintaining Sinus Rhythm

- Fewer symptoms / better exercise tolerance
- Lower risk of stroke
- Long-term anticoagulation may not be needed if sinus rhythm is successfully maintained
- Better quality of life
- Better survival

AFFIRM – Study Overview

- Comparison of two treatment strategies for patients with atrial fibrillation needing treatment
 - Rate control and anticoagulation
 - Rhythm control and anticoagulation
- Multicenter, randomized trial
- Patients with atrial fibrillation and risk factors predicting a high risk for stroke and death
- Null hypothesis: survival is equal with the two treatment strategies

Initial Therapy

- **Rate arm**
 - Digoxin: 51%
 - Beta adrenergic blockers: 49%
 - Calcium channel blockers: 41%

- **Rhythm arm**
 - Amiodarone: 39%
 - Sotalol: 33%
 - Propafenone: 10%
 - Procainamide: 6%
 - Quinidine: 5%
 - Flecaïnide: 5%
 - Disopyramide: 2%
 - Moricizine: 1%

Warfarin Use

<table>
<thead>
<tr>
<th>% Using Warfarin at Follow-up Visit</th>
<th>BL</th>
<th>2M</th>
<th>4M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>4Y</th>
<th>5Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate: 2027 1942 1934 1852 1726 1229 735 248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhythm: 2033 1650 1933 1851 1718 1241 737 268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical AF Treatment

- **Rate Control**
 - Beta blockers
 - Metoprolol
 - Calcium channel blockers
 - Diltiazem
 - Digoxin

- **Rhythm Control** 20-30% remain sinus after 1 year
 - Amiodarone (heart failure pts)
 - Propafenone, sotalol, dronedarone, flecainide, dofetilide

Anticoagulation

<table>
<thead>
<tr>
<th>CHADS, Risk Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Congestive heart failure</td>
<td>1</td>
</tr>
<tr>
<td>H Hypertension — blood pressure consistently above 140/90 mmHg (or treated hypertension on medication)</td>
<td>1</td>
</tr>
<tr>
<td>A Age ≥ 75</td>
<td>1</td>
</tr>
<tr>
<td>D Diabetes mellitus</td>
<td>1</td>
</tr>
<tr>
<td>S Prior Stroke or TIA or Thromboembolism</td>
<td>2</td>
</tr>
</tbody>
</table>

“Typical” AF Treatment

- **Rhythm Control**
 - Beta blockers
 - Metoprolol
 - Calcium channel blockers
 - Diltiazem
 - Digoxin

- **Rhythm Control** 20-30% remain sinus after 1 year
 - Amiodarone (heart failure pts)
 - Propafenone, sotalol, dronedarone, flecainide, dofetilide

Functional Status and Quality of Life

- **Functional Status**
 - 6-minute walk
 - NYHA CHF class
 - CCS angina class
- **Quality of Life**
 - SF – 36
 - Symptom checklist
 - Ladder of Life
 - Quality of Life Index

No differences between rate and rhythm control arms
"Typical" AF TREATMENT

- ANTICOAGULATION
 - warfarin (INR 2.0 – 3.0)
 - dabigatran 75-150 mg BID (DTI)
 - Rivaroxaban 15-20 mg QD (Xa inhibitor)
 - Apixiban 2-5 mg BID (Xa inhibitor)

- CARDIOVERSION
 - Afib < 48 hours:
 - No anticoagulation indicated
 - Afib > 48 hours:
 - Anticoagulate for 3-4 weeks before CV
 - OR get TEE
 - Anticoagulate for 1 month after CV

- AF ablation
- MAZE procedure

"Typical" AF FOLLOWUP

- Medication maintenance
 - Anticoagulation – INR (warfarin), renal, hepatic
 - Rate control
 - Digoxin level
 - ECG, HR
 - Rhythm control
 - Sotalol – QTc, esp with dosage changes
 - Amiodarone
 - ECG ? Q 3 months
 - Pulmonary fibrosis – annual PFTs; CXR q 3 months
 - CHF
 - Hypo or hyperthyroidism – q 6 months
 - Corneal deposits – retinopathy – annual eye exam
 - Liver dysfunction – q 6 months

Variations on “Typical”

- PRESENTATION
 - Asymptomatic
 - Even with extremely high heart rates
 - Unstable

- ETIOLOGY
 - Hyperthyroidism
 - COPD
 - Albuterol
 - Stimulants
 - Caffeine
 - Amphetamines
 - Methamphetamine
AF in Acute and Critical Care

- Evaluate and treat as ‘typical’
- Patients with known PAF or chronic AF
 - With stable dysrhythmia
- Patients presenting with AF
 - Unstable
- Patients presenting with anything else
 - New or recurrent AF during the hospitalization

AF in Acute and Critical Care

- Evaluate and treat as ‘typical’
- Patients with known PAF or chronic AF
 - With stable dysrhythmia
- Patients presenting with AF
 - Unstable
- Patients presenting with anything else
 - New or recurrent AF during the hospitalization

AF in Acute and Critical Care

- Evaluate and treat as ‘typical’
- Patients with known PAF or chronic AF
 - With stable dysrhythmia
- Patients presenting with AF
 - Unstable
- Patients presenting with anything else
 - New or recurrent AF during the hospitalization

AF in Acute and Critical Care

- Evaluate and treat as ‘typical’
 - Rate control vs. rhythm control
 - Anticoagulation
 - Telemetry, ECGs
 - TTE, TEE
 - Cardiac ischemia eval
 - Think about PE
AF in Acute and Critical Care

- Evaluate and treat as ‘typical’
- Patients with known PAF or chronic AF
 - With stable dysrhythmia

Patients presenting with AF

- Unstable
 - Patients presenting with anything else
 - New or recurrent AF during the hospitalization

AF in Acute and Critical Care

- Patients presenting with AF
 - Unstable
 - Symptoms due to AF or something else???
 - ? PE
 - ? MI
 - ? Heart failure
 - ? Sepsis
 - ? Any other critical illness

AF in Acute and Critical Care

- Patients presenting with AF
 - Unstable
 - Emergent cardioversion
 - Electrical
 - Chemical – ibutilide, procainamide
 - If stable after cardioversion, treat like the ‘typical’ patient for management and follow up
 - If not stable........

AF in Acute and Critical Care

- Patients presenting with AF
 - Unstable
 - Hypotension
 - Chest pain
 - Short of breath

AF in Acute and Critical Care

-Patients presenting with anything else
 - New or recurrent AF during the hospitalization
AF in Acute and Critical Care

- Patients presenting with anything else
 - New or recurrent AF during the hospitalization
 - Consider new diagnoses / complication
 - Post cardiac surgery
 - Sympathetic nervous system stimulation

AF in Acute and Critical Care

- New diagnoses / complications
 - In addition to presenting diagnosis
 - Pulmonary embolus
 - Pericarditis / pericardial effusion
 - Pneumonia
 - Fluid overload / CHF – atria stretched

AF in Acute and Critical Care

- Post cardiac surgery
 - ~ 30% incidence of atrial fibrillation
 - Etiology – physical stimulation of cardiac muscle and nerve fibers; ? Effects of CPB
 - Prophylaxis – no conclusive proof
 - Beta blockers
 - Amiodarone
 - Magnesium
 - Workup
 - None except the ECG (could check TSH)

AF in Acute and Critical Care

- Post cardiac surgery
 - Rate control – unless hemodynamic compromise from loss of atrial activity
 - Metoprolol, diltiazem – negative inotropes
 - Amiodarone – careful with dosing at discharge
 - Digoxin
 - Anticoagulate
 - When not bleeding, after chest tubes out
 - Warfarin, not heparin
 - Recurrences not unexpected – several months post op

AF in Acute and Critical Care

- Sympathetic nervous system stimulation
 - Increased HR
 - Arrhythmias
 - AF
 - WHY IS THE SNS ‘OVERREACTING’?
 - ‘fight or flight’
 - Response to acute and critical illness
 - Sympathomimetic infusions
 - Epi, norepi, dopamine, dobutamine
AF in Acute and Critical Care

- Sympathetic nervous system stimulation
- May have no cardiac history or heart disease
- Workup
 - ECG
 - Thyroid panel
 - Echocardiogram (if not already done)
 - No ischemic workup unless otherwise indicated

AF in Acute and Critical Care

- Sympathetic nervous system stimulation
- TREATMENT can be difficult
 - Sympathomimetics – wean (may not be able)
 - Beta blockers, calcium channel blockers
 - May not tolerate hemodynamically
 - Amiodarone – not great for rate control
 - Digoxin – not fast
 - Cardioversion – usually fast recurrence due to continued SNS stimulation

AF in Acute and Critical Care

- Sympathetic nervous system stimulation
- TREATMENT can be difficult
- Amiodarone
- Magnesium
- Potassium
- Cardioversion attempt if unstable
- Treat the underlying condition

- <15% are still in AF when discharged from ICU

Questions?