Denean Yerger

WVHCS/ University of Scranton
School of Nurse Anesthesia
Case Review/ Analysis
Abdominal Aortic Aneurysm

“AAA”

Incidence
Mortality
Rupture
Objectives

• Analyze the preoperative evaluation of a patient undergoing a two-staged surgery:
 – Arterial Ilio-Renal Bypass
 – Endovascular Abdominal Aortic Aneurysm Repair

• Describe anesthetic implications of several comorbidities: Glaucoma, Chronic Obstructive Pulmonary Disease, Alcoholic Cardiomyopathy, Chronic Renal Insufficiency.

• Describe the surgical and anesthetic considerations of both these surgeries.
2- Staged Surgery

Ilio-Renal bypass

4 days later

Endovascular AAA Repair

Complexity

Anatomy

Time

- Surgical
- Anesthesia
Indication for Surgery

- **7.7 x 8 cm** AAA extending into the right common iliac artery

- **Congenital anomaly**
Aneurysm

iliac arteries

AORTA

K

K
Question

• What is the difference between a “true” and “false” aneurysm?
True: bounded by the complete vessel wall

False: (pseudoaneurysm) localized dissection (tear) in the inner wall of the artery

Dissection: separation between the intima and media layer (1)

- A *false* lumen for blood flow is created

Intramural hematoma is considered a precursor to dissection and is medically treated the same (1)
Classification (anatomical)

Berry
Fusiform
Dissecting
Saccular

Richard E. Klabunde
www.cvphysiology.com
Classification of Arterial Aneurysm by Cause

<table>
<thead>
<tr>
<th>Congenital</th>
<th>Mechanical</th>
<th>Inflammatory</th>
<th>Infectious</th>
<th>Degenerative</th>
<th>Anastomosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehlers-Danlos Syndrome</td>
<td>Post-stenotic</td>
<td>Takayasu</td>
<td>Bacterial</td>
<td>Nonspecific</td>
<td>Post-arteriotomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marfan Syndrome</td>
<td>AV fistula associated</td>
<td>Behcet</td>
<td>Fungal</td>
<td>Sclerotic arteries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>Kawasaki</td>
<td>Spirochetal</td>
<td></td>
<td>Dysplastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microvascular disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table: Nagelhout & Plaus, 2010, p. 539)
Physical Exam

- Screening by palpation followed by ultrasound decreases mortality --
 - Especially in male smokers > 65 years old (2)
 - Male to female ratio = 9:1 (3)

Size of the aneurysm is the MOST important determining factor for rupture! (3)
Physical Exam

• Periumbilical or abdominal mass with expansile pulsations **3 cm or wider** suggests AAA (2)
 – Sensitivity to palpation increases as the size increases (2)

• > **4 cm** usually palpable = Rupture 15 X’s more likely (2)

• > **5 cm** rupture and mortality dramatically increases (3)

• > **5.5 cm** surgical intervention recommended (5, p. 530)
Risk Factors

Smoking is the strongest independent risk factor. (3)
- 90% of people who develop AAA have history of smoking (3)

Hypertension is present in 60% of patients with aneurysmal lesions. (5)

Genetics may also contribute to the predisposition for development. (5)

Obesity is not an independent risk factor but may mask signs and symptoms until complications arise. (5)
Pathogenesis

Atherosclerosis – thought to be the primary cause of AAA’s in more than 90% of patients. (5)

- This theory has been challenged

- Some speculate aneurysmal development may be the result from **proteolysis of elastin and collagen within the vessel wall.** (5)

- Inflammation and Immune responses (5)
Pathogenesis

- Inflammation
- Degradation of elastin and collagen
- Thrombus formation
- Weakening of the arterial wall
- Distending forces (3, p. 301-310)
Pathogenesis

Tension = Pressure \times \text{Radius}

As aneurysm grows \rightarrow tension increases
Medical History
Medical history

• Arthritis
• Gastroesophageal Reflux Disease (GERD)
• Glaucoma
• Severe Chronic Obstructive Pulmonary Disease (COPD)
• Alcoholic Cardiomyopathy
• Hyperlipidemia
• Hypertension
• Congenital Anomaly
• Chronic Renal Insufficiency (CRI)
Medical History
1.) Glaucoma
2.) COPD
3.) CMO
4.) CRI

Glaucoma
Glaucoma

Intraocular pressure
10 – 21.7 mmHg

> 22 mmHg Abnormal

Primary open (simple) angle
- Chronic
- MOST common
- Resistance to outflow

Closed angle
- Acute
- 1/10 as common
- Obstruction to outflow

RISK = optic nerve ischemia
- Blindness

GOAL = minimize ↑ IOP
Glaucoma – **Key Points**

- Maintain eye drops
- Avoid venous congestion and overhydration \(^{(1)}\)
- Avoid hypotensive episodes \(^{(1)}\)
 - Prone to retinal vascular thrombosis

Scopolamine – do **not** use in glaucoma \(^{(1)}\)
 - **Greatest** mydriatic effect
Medical History
1.) Glaucoma
2.) **COPD**
3.) CMO
4.) CRI
COPD

Emphysema

- Enlargement of air spaces

Bronchitis

- Excessive mucus production
- Hypertrophy of mucus glands
 - "Reid Index" (13)
COPD – Features

<table>
<thead>
<tr>
<th>Emphysema (type A) → Pink Puffer</th>
<th>Bronchitis (type B) → Blue Bloater</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ dyspnea over years</td>
<td>↑ dyspnea over years</td>
</tr>
<tr>
<td>Little/no cough</td>
<td>Frequent cough with sputum</td>
</tr>
<tr>
<td>Marked chest overexpansion</td>
<td>Moderate or no ↑ chest volume</td>
</tr>
<tr>
<td>No cyanosis</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>Quiet breath sounds</td>
<td>Rales, rhonchi</td>
</tr>
<tr>
<td>Normal JVP</td>
<td>May have raised JVP</td>
</tr>
<tr>
<td>No peripheral edema</td>
<td>May have peripheral edema</td>
</tr>
<tr>
<td>Slight depressed arterial PO₂</td>
<td>Very low PO₂</td>
</tr>
<tr>
<td>Arterial PCO₂ normal</td>
<td>↑ PCO₂</td>
</tr>
</tbody>
</table>

(Table: West, 2008, p. 61)

Cor Pulmonale = COMMON (13)
COPD

• Functional loss of pulmonary capillaries = (5)

- Occurs gradually
- Right ventricle compensation occurs

Longstanding COPD: Suspect pulmonary artery hypertension & chronic cor pulmonale
- Especially if PaO₂ < 60 mmHg
- HYPOXIA = **most** potent stimulus for pulmonary vasoconstriction
COPD

Is clinical status optimized?

Quit smoking

Screen for impending exacerbations
- Consider: ABX, bronchodilators, postpone

Neuraxial anesthesia planned →
Sensory anesthesia *above T6 not* recommended (5)

Room Air SpO₂, ABG, Electrolytes

PFT’s ? Invasive Monitoring ?
COPD

Preoxygenation
Bronchodilators
Inhaled anesthetics may not reverse airflow obstruction, in contrast with asthmatic patients.
Avoid Nitrous
ABG monitoring
Ventilate to Normalize pH
COPD

Extubation Concerns:
- Bronchospasm
- Deep extubation = risk of inadequate ventilation & CO$_2$ retention

Adequate Analgesia:
- Careful use of narcotics
- Epidural = reduction in systemic narcotic requirements
- Tolerate respiratory regimen
Medical History
1.) Glaucoma
2.) COPD
3.) CMO
4.) CRI

Cardiomyopathy
Ejection Fraction
(EF)
Cardiomyopathy

• What exactly is an “Ejection Fraction”?
 – Normal EF Range = 60-70%

• EF = \((EDV-ESV) / EDV\) (x 100)

• EF < 50% = moderate reduction
• EF < 30% = poor function
Cardiomyopathy

Hypertrophic

Dilated

Restrictive
Dilated Cardiomyopathy

Nonischemic: Chemo Agents, Drug Abuse, **Alcohol**, Peripartum

(12, p. 348)
Alcoholic Cardiomyopathy

• **Proposed Mechanisms:** (10)
 - Nutritional deficiencies
 - Secondary exposures
 - Other comorbidities

• Most evidence in literature = **Direct toxic result** of ethanol or its metabolites (10)

• **Prognosis:** Abstinence (10)
Cardiomyopathy

• **Presentation** of CMO Patients: (12)

 – History of CHF/CAD
 – **Medications**: furosemide, ACE inhibitors, digoxin, beta blocker
 – Cardiomegaly on CXR
 – ICD/Biventricular pacer (EF < 30%)
 – Conduction defects on EKG
Cardiomyopathy

• **Profound hypotension caused by:** (12)
 - ↓ myocardial contractility
 - ↓ in HR
 - Vasodilation
 - Dehydration contributes

• High risk for ventricular arrhythmias
• ACE inhibitors + diuretics = hypotension
• Correct electrolytes
• Optimize Hemoglobin: Major determinants of oxygen carrying capacity are **hemoglobin** & **cardiac output**
• **Inotropes** - (resistant to usual doses)
Figure 2. Effects of acute left ventricular failure (loss of inotropy) on left ventricular pressure-volume loop. Heart rate unchanged.

http://www.cvphysiology.com/Cardiac%20Function/CF024.htm
Medical History
1.) Glaucoma
2.) COPD
3.) CMO
4.) CRI
Chronic Kidney Disease

- **End Stage Renal Disease (ESRD)**
 - Fatal renal dysfunction **without** renal replacement therapy (1)

- **Chronic Renal Insufficiency (CRI)** (1,5)
 - Only 10-40% of nephrons functioning adequately
 - Radiocontrast exposure

- **Decreased Renal Reserve**
 - Loss of nephron function **without** symptoms
Glomerular Filtration Rate (GFR)

- **Best measure of overall kidney function** (11, p. 861)

- **Varies with:** age, sex, body size
Glomerular Filtration Rate

Young healthy adults = 120-130

Chronic Kidney Disease - Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>GFR (ml/min/1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kidney Damage with Normal or ↑ GFR</td>
<td>>90</td>
</tr>
<tr>
<td>2</td>
<td>Mild ↓ GFR</td>
<td>60-89</td>
</tr>
<tr>
<td>3</td>
<td>Moderate ↓ GFR</td>
<td>30-59</td>
</tr>
<tr>
<td>4</td>
<td>Severe ↓ GFR</td>
<td>15-29</td>
</tr>
<tr>
<td>5</td>
<td>Kidney Failure</td>
<td><15 or Dialysis</td>
</tr>
</tbody>
</table>

Adapted from Am J Kidney Dis 2002; 39 (2, Suppl. 1), S46-S75
Chronic Kidney Disease

- **Anesthesia:** (1,p. 1356)
 - **Direct** anesthetic effects usually not harmful
 - **Indirect** effects that worsen renal dysfunction
 - Hypovolemia
 - Shock
 - Nephrotoxin exposure
 - Other renal vasoconstrictive states

- NO comparative studies demonstrating superior renal protection or improved renal outcomes with general versus regional anesthesia. (1)
Chronic Kidney Disease

- Critical Goal in Renal Insufficiency = Sustain Blood Volume
Preoperative Evaluation
Surgical history

• No major surgery
• Cardiac catheterization = No significant coronary artery disease
Preop Eval

<table>
<thead>
<tr>
<th>Medications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td>Beta – 2 agonist</td>
</tr>
<tr>
<td>Spiriva</td>
<td>Anticholinergic (Bronchodilator)</td>
</tr>
<tr>
<td>Xalatan (latanoprost)</td>
<td>Prostaglandin agonist</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>ACE Inhibitor</td>
</tr>
<tr>
<td>Coreg</td>
<td>Beta & Alpha Blocker</td>
</tr>
<tr>
<td>Aspirin</td>
<td>Cyclo-oxygenase Inhibitor</td>
</tr>
<tr>
<td>Prilosec</td>
<td>Proton Pump Inhibitor</td>
</tr>
</tbody>
</table>
Preop Eval

<table>
<thead>
<tr>
<th>Labs</th>
<th>Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&H</td>
<td>16 / 48</td>
<td>(14-18 g/dL) (42%-52%)</td>
</tr>
<tr>
<td>BUN/Cr</td>
<td>24/ 1.6</td>
<td>(8-20 mg/dL) (0.2-1.5 mg/dL)</td>
</tr>
<tr>
<td>INR</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>Platelets</td>
<td>86,000</td>
<td>130,000 – 370,000 mm³</td>
</tr>
<tr>
<td>K</td>
<td>4.3</td>
<td>3.8 – 5.5 mEq/L</td>
</tr>
<tr>
<td>Na</td>
<td>140</td>
<td>135 – 145 mEq/L</td>
</tr>
<tr>
<td>Ca</td>
<td>9</td>
<td>4.5 – 5.5 mEq/L</td>
</tr>
<tr>
<td>Cl</td>
<td>104</td>
<td>100 – 108 mEq/L</td>
</tr>
<tr>
<td>Glucose</td>
<td>102</td>
<td>70-100 mg/dL</td>
</tr>
<tr>
<td>CO₂</td>
<td>30</td>
<td>24 -29 mEq/L</td>
</tr>
<tr>
<td>GFR</td>
<td>45</td>
<td>ml/min/1.73m²</td>
</tr>
</tbody>
</table>
Preop Eval

<table>
<thead>
<tr>
<th>BMI</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-29.9</td>
<td>Overweight</td>
</tr>
<tr>
<td>30-34.9</td>
<td>Moderate obesity</td>
</tr>
<tr>
<td>35-39.9</td>
<td>Severe obesity</td>
</tr>
<tr>
<td>40 or greater</td>
<td>Morbidly obese</td>
</tr>
</tbody>
</table>

ASA Classification = 3

“Severe systemic disturbance that limits activity”

(1, p. 395)
Preop Eval

<table>
<thead>
<tr>
<th>Baseline Vital Signs</th>
<th>Fluid Calculations</th>
<th>Fluid Requirments (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>72
 108/77
 18
 89% room air
 98.6</td>
<td>Maintenance
 • 125 ml/h
 Deficit
 • 1500 ml
 3rd space losses
 • 700 ml/h</td>
<td>1st hour = 1500
 2nd hour = 1200
 3rd hour = 1200
 4th hour = 800
 TOTAL = 4700
 + Blood loss & Urine Replacement</td>
</tr>
</tbody>
</table>
Preop Eval

• Anticipated difficult airway from assessment? **NO**

• **Bowel prep** (NPO)
• T & C 2 units PRBCs (available in room)
• Right radial A-Line
• PIV’s x 3 (16g, 18g, 20g)
Preop

• **Prior to Placement of Epidural:**
 – 1000 mL Lactated Ringer’s Infused
 – Versed 2 mg, Oxygen

• **Epidural placed in T9-10 interspace:**
 – Test dose Negative
 – 100 mcg fentanyl given via epidural
Ilio-Renal Bypass Graft
Ilio-Renal Bypass Graft

<table>
<thead>
<tr>
<th>Arrival to OR</th>
<th>Induction</th>
<th>Intubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP = 86/48</td>
<td>SBP ↑ 105</td>
<td>Grade I view of glottis 8.5 ETT @ 24 cm</td>
</tr>
<tr>
<td>HR = 60</td>
<td>Phenylephrine</td>
<td>OG</td>
</tr>
<tr>
<td></td>
<td>• 200 mcg</td>
<td>Esophageal temp probe</td>
</tr>
<tr>
<td></td>
<td>Fentanyl</td>
<td>Albuterol</td>
</tr>
<tr>
<td></td>
<td>• 50 mcg</td>
<td>Pressure Control Ventilation (PCV)</td>
</tr>
<tr>
<td></td>
<td>Propofol</td>
<td>• PIP = 21</td>
</tr>
<tr>
<td></td>
<td>• 100mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norcuron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 10 mg</td>
<td></td>
</tr>
<tr>
<td>Additional liter crystalloid infused</td>
<td>Hemodynamically Stable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABX</td>
<td></td>
</tr>
<tr>
<td>Total = 2 L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ABX
- Grade I view of glottis
- ETT @ 24 cm
- Pressure Control Ventilation (PCV)
Right - Lateral
Ilio-Renal Bypass Graft

Maintenance
- **Isoflurane**
- **PCV:** TV 515-715 ml
- **SpO₂** 98%, **FiO₂** 0.80
- **Norcuron**
- **Heparin** 5000 units
- **Phenylephrine**
- **Ephedrine**
 - Maintain SBP > 100 mmHg
- **Protamine** 25 mg

Epidural
- **Fentanyl** 100 mcg
- **Marcaine** 0.25%
 - Total = 9 ml
Ilio-Renal Bypass Graft

• Emergence

Extubate ??
Emergence

• COPD diagnosis = twice as likely to have postoperative pulmonary complications (9)

• Risk factors that ↑ risk: (8,9)
 – Preop sepsis
 – Emergency operations
 – > 60 years old
 – Smoking history
 – Comorbid diseases (ASA III or greater)
 – Chronic bronchitis
 – Obesity
 – Type of surgery (abdominal/ thoracic)
 – Prolonged surgery > 3-4 hours
Ilio-Renal Bypass Graft

<table>
<thead>
<tr>
<th>Emergence</th>
<th>Extubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodynamically Stable</td>
<td>Adequate signs of reversal</td>
</tr>
<tr>
<td>Reversal</td>
<td>Extubated without difficulty</td>
</tr>
<tr>
<td>Neostigmine</td>
<td>10 L NRB Mask</td>
</tr>
<tr>
<td>Robinul</td>
<td>Transported to PACU</td>
</tr>
</tbody>
</table>

Yerger 62
Ilio-Renal Bypass Graft

<table>
<thead>
<tr>
<th>PACU</th>
<th>Intake/ Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR = 89 NSR</td>
<td>Crystalloid = 6400 ml</td>
</tr>
<tr>
<td>BP = 112/52</td>
<td>Cell Saver = 225 ml</td>
</tr>
<tr>
<td>Normothermic</td>
<td>Urine Output = 835 ml</td>
</tr>
<tr>
<td>SpO₂ = 99% NRB</td>
<td>EBL = 1300 ml</td>
</tr>
<tr>
<td>Changed to NC</td>
<td></td>
</tr>
<tr>
<td>Awake, appropriate</td>
<td></td>
</tr>
<tr>
<td>Strength strong</td>
<td></td>
</tr>
<tr>
<td>Respirations regular & unlabored</td>
<td></td>
</tr>
<tr>
<td>No pain</td>
<td></td>
</tr>
</tbody>
</table>
Postop Day 1

• **Fluid Challenges**
 Maintain SBP 100–120 mmHg
 HR = 80 NSR

• 95% on 3L NC – 18 bpm

• **Ileus**
 – Nauseous
 – Abdomen distended
 – NG placed

• **Epidural intact**

<table>
<thead>
<tr>
<th>Lab</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&H</td>
<td>11.6 / 35</td>
</tr>
<tr>
<td>Platelets</td>
<td>↓ 61,000</td>
</tr>
<tr>
<td>Bun/ Cr</td>
<td>21 / 1.1</td>
</tr>
</tbody>
</table>
Postop Day 4

Endovascular Abdominal Aortic Aneurysm Repair (EVAR)

http://www.uchospitals.edu/specialties/vascular-surgery/aaa-repair.html#P26_3350
Open Versus EVAR

Open Repair
- Transperitoneal
- Retroperitoneal

♦ **Aorta Crossclamped**
- Hemodynamic Instability

Endovascular
- Cut down femoral arteries

Guide Wire: Iliac Artery

Fluoroscopy

Pictures: http://www.uchospitals.edu/specialties/vascular-surgery/aaa-repair.html#P26_3350
EVAR

Advantages: (6,7)

- Improved hemodynamic stability

Embolic issues
Blood loss
Stress response
Renal dysfunction
Postop pain
Incidence of spinal cord ischemia (1)
EVAR

- **Patient Eligibility:**
 - Shape of aneurysm
 - Feasibility of femoral or iliac arteries
 - Compensate for vascular exclusion of the aortic branches that will not be supplied once the stent graft is in place
 - Hypogastric
 - Inferior mesenteric
 - Artery of Adamkiewicz

Postop ??
- Lactic acidosis
- Diffuse abdominal/pelvic pain
EVAR – Case Card (4)

- **General/ Epidural/ Spinal/ Local with sedation**
- **Supine**
 Time: 1-3 hours
 Aortogram
- **14-16 g IV x 2**
 A-line
 Kefzol
- **PRBC’s available**
 EBL: Minimal
- **Pain**: 3-4
 Mortality: 2-3%
- **Induction**: Standard
- **Emergence**: Extubation desirable
- **ICU**: x 1 day
- **Prior to catheter manipulation**: Heparin 50-100 units/kg
- **Stent deployment**: ↓ MAP 50-60 mmHg
EVAR

• **Goals for Intraoperative Management:**

 – Hemodynamic Stability
 – Analgesia
 – Anxiolysis

 – Preparation for rapid conversion to open technique
EVAR

• **Intraop Concerns:**

 – **Regional**: *Sympathectomy* = Anticipate ↓ BP

 – Cardiac Ischemia

 – **Cerebrovascular Disease**: BP 10-15% baseline

 – **Hemorrhage**: Persistent drops in BP or Hct out of proportion to EBL

 – Protamine
EVAR

• Potential postoperative complications: (1, p. 545)
 – Graft & Deployment (Endoleaks)
 – Radiologic implications
 • Contrast injection
 – Renal Insufficiency
 – Systemic
 • Cardiac Morbidity
 • Pulmonary Insufficiency
 • Renal Insufficiency
Endoleak

• **4 Types** (1, p. 546)
 - Type I
 - **Type II:** Branch leak
 - Type III
 - Type IV

Imagen: http://www.ajronline.org/content/192/4/W178/F2.expansion.html
Endoleak

http://www.uptodate.com/contents/image?imageKey=CARD%2F3263&topicKey=SURG%2F8185
Medical History

- Arthritis
- GERD
- Glaucoma
- COPD
- Cardiomyopathy
- Hyperlipidemia
- Hypertension
- Chronic Renal Insufficiency

Ilio-Renal Bypass Surgery
- Large incision
- Ileus
- Respiratory insufficiency
- Epidural catheter
EVAR – Preop

<table>
<thead>
<tr>
<th></th>
<th>POD #1</th>
<th>POD #4 (preop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&H</td>
<td>11.6 / 35</td>
<td>10.9 / 31.9</td>
</tr>
<tr>
<td>Na</td>
<td>140</td>
<td>139</td>
</tr>
<tr>
<td>K</td>
<td>3.9</td>
<td>4.2</td>
</tr>
<tr>
<td>BUN/ Cr</td>
<td>21 / 1.1</td>
<td>18 / 0.9</td>
</tr>
<tr>
<td>Platelet</td>
<td>61,000</td>
<td>81,000</td>
</tr>
</tbody>
</table>

Assessment

Epidural → Fentanyl 5mcg/mL + Ropivacaine 0.1% (6 mL/hour)

NG
EVAR

<table>
<thead>
<tr>
<th>Arrival to OR</th>
<th>Induction</th>
<th>Intubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP = 138/70 (A-line)</td>
<td>Fentanyl
- 50 mcg</td>
<td>8.0 ETT @ 23 cm</td>
</tr>
<tr>
<td>HR = 86</td>
<td>Propofol
- 100 mg</td>
<td>NG
Esophageal temp probe</td>
</tr>
<tr>
<td>SpO₂ = 93% on 4L NC</td>
<td>Zemuron
- 50 mg</td>
<td>Pressure Control Ventilation (PCV)
- PIP = 26</td>
</tr>
<tr>
<td>Hemodynamically Stable</td>
<td>ABX</td>
<td></td>
</tr>
<tr>
<td>Epidural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Epidural</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Desflurane</td>
<td>Same Infusion</td>
<td></td>
</tr>
<tr>
<td>PCV: TV 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpO₂ 98-100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FiO₂ 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zemuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heparin 10,000 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylephrine gtt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Maintain SBP 110-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR 60-90 bpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protamine 50 mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intake/ Output

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalloid</td>
<td>1900 ml</td>
</tr>
<tr>
<td>Cell Saver</td>
<td>225 ml</td>
</tr>
<tr>
<td>Urine Output</td>
<td>1125 ml</td>
</tr>
<tr>
<td>EBL</td>
<td>550 ml</td>
</tr>
</tbody>
</table>
EVAR

• Emergence

Extubate ??
<table>
<thead>
<tr>
<th>Emergence</th>
<th>Extubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodynamically Stable</td>
<td>Adequate signs of reversal</td>
</tr>
<tr>
<td>Reversal</td>
<td>Extubated to 10 L NRB Mask</td>
</tr>
<tr>
<td>Neostigmine</td>
<td>• Immediate ↓ SpO₂</td>
</tr>
<tr>
<td>Robinul</td>
<td>• Poor Inspiratory Effort/ Weak</td>
</tr>
<tr>
<td></td>
<td>PPV from Mask = ↑ SpO₂</td>
</tr>
<tr>
<td></td>
<td>Transported to PACU on NRB 100%</td>
</tr>
</tbody>
</table>
EVAR

<table>
<thead>
<tr>
<th>PACU Vital Signs</th>
<th>Airway</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR = 108</td>
<td>SpO₂ ↓</td>
</tr>
<tr>
<td>BP = 131/62</td>
<td>Weak Inspiratory Effort</td>
</tr>
<tr>
<td>Normothermic</td>
<td>Lethargic</td>
</tr>
<tr>
<td>SpO₂ = low 90’s</td>
<td>Bipap applied</td>
</tr>
<tr>
<td>SpO₂ ↓</td>
<td>• Result = ↑ SpO₂ 95%</td>
</tr>
<tr>
<td>Weak/ Poor Inspiratory Effort</td>
<td>Reintubated</td>
</tr>
<tr>
<td></td>
<td>Transferred to ICU</td>
</tr>
</tbody>
</table>
POD #1

<table>
<thead>
<tr>
<th>LAB</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>6.8</td>
</tr>
<tr>
<td>H&H</td>
<td>10.3 / 30.6</td>
</tr>
<tr>
<td>Platelets</td>
<td>74,000</td>
</tr>
<tr>
<td>Na/ K</td>
<td>138 / 4.4</td>
</tr>
<tr>
<td>Bun/Cr</td>
<td>20 / 1</td>
</tr>
</tbody>
</table>

Pt extubated early → Did well on nasal cannula
Epidural DC’d → Pain management = IV PCA
NG removed
OOB, eating

Transferred to floor
References

References marked with an asterisk indicate studies included in the reference book.

References

Thank you