LEARNER OUTCOMES

- Discuss the interaction between intracranial pathophysiology, cerebral perfusion and general anesthesia.
- Summarize the fast-track technique for neuroanesthesia.

CEREBRAL ISCHEMIA

- Result of diminished blood and/or oxygen supply to the brain.
- Divided into three categories:
 - Reversible or irreversible
 - Complete or incomplete
 - Global vs. Focal
- Certain areas more susceptible than others to injury.

CEREBRAL PHYSIOLOGY

- CMRO₂ – Cerebral Metabolic Rate of Oxygen
- CBF – Cerebral Blood Flow
- CPP – Cerebral Perfusion Pressure
- ICP – Intracranial Pressure

Cerebral O₂ Consumption (CMRO₂)

- Comprises 20% of total body O₂ consumption (250 ml O₂/min).
- CMRO₂ greatest in grey matter.
- CMRO₂ = 3.0-3.8 ml/100g/min (50 ml/min).
- Physiologic effects:
 - Mentally alert: 3.5 ml/100g/min
 - Mentally confused: 2.8 ml/100g/min
 - Comatose: 2.0 ml/100g/min.
CEREBRAL PHYSIOLOGY

- Cerebral Blood Flow (CBF)
 - Parallels Metabolic Activity
 - \(1 \text{CMR} = 1 \text{CMRO}_2 = 1 \text{CBF} \)
 - Normal CBF: 50-55 ml/100g of Brain Tissue/Minute
 - 15% of Cardiac Output
 - Regional CBF can vary between 20-80 ml/100g of Brain Tissue/Minute

- Regulation of Cerebral Blood Flow
 - Arterial \(\text{CO}_2 \) Tension (\(\text{PaCO}_2 \))
 - Arterial O2 Tension (\(\text{PaO}_2 \))
 - Mean Arterial Pressure (MAP)
 - Autoregulation
 - Cerebral Perfusion Pressure (CPP)

REGULATION OF CBF

- Arterial \(\text{CO}_2 \) Tension (\(\text{PaCO}_2 \))
 - CBF is directly proportional to \(\text{PaCO}_2 \)
 - Between tensions of 20-80 mmHg
 - Blood flow changes approximate 1-2 ml/100g/min per 1 mmHg change in \(\text{PaCO}_2 \)
 - Hypocapnia results in vasoconstriction and decreased CBF, CBV and ICP
 - Hypercapnia increases CBF by 2 ml/100 g of Brain Tissue for each single Torr increase in \(\text{PaCO}_2 \)

RELATIONSHIP BETWEEN \(\text{PaCO}_2 \) AND CBF

- Arterial O2 Tension
 - Resistant to most changes in \(\text{PaO}_2 \)
 - Hypoxemia leads to a profound increase in CBF
 - Hyperoxia is associated with a less than 10% decrease in CBF

REGULATION OF CBF

- Mean Arterial Pressure
 - Autonomous curve of the cerebral vasculature in the normotensive adult, the hypertensive adult, and the newborn.
REGULATION OF CBF
- Mean Arterial Pressure
 - Severe Hypotension Leads To Cerebral Ischemia
 - 20-25 ml/100g/min - cerebral impairment
 - 15-20 ml/100g/min – produce isoelectric EEG
 - Below 10 ml/100g/min - associated with irreversible brain damage

- Cerebral Perfusion Pressure
 - CPP=MAP-ICP if ICP > CVP
 - CPP=MAP-CVP if CVP > ICP
 - Usually ICP < 10 mmHg, therefore CPP dependent on MAP
 - Normal CPP-80-100 mmHg
 - Decrease in CPP - cerebral vasodilation
 - Increase in CPP - cerebral vasoconstriction
 - Effects of CPP on EEG
 - Lower limit of CPP is 50 mmHg
 - Less than 50 mmHg - slowing EEG
 - Between 25-40 mmHg - flat EEG
 - Less than 25 mmHg - irreversible brain damage

INTRACRANIAL PRESSURE
- Determined By Contents Of Intracranial Compartment
 - Consists of brain and water-80%
 - Blood-12%
 - CSF-8%
- Normal ICP In Supine Position 5-15 mmHg
- Compensatory Mechanisms
 - Displacement of CSF from cranial to spinal compartment
 - Increase in CSF absorption
 - Decrease in CSF production
 - Decreased in CBV

INTRACRANIAL COMPLIANCE
- Measures The Change In ICP In Response To Changes In Intracranial Volume

INCREASED ICP
- Normal Elastance Of Intracranial Contents
 - Without Intracranial Pathology
- Abnormal Elastance
 - Causes Include
 - Mass Lesions
 - Bleeding
 - CSF Volume
 - Air
 - Foreign Body
INTRACRANIAL PRESSURE

- Increased ICP
 - Normal Elastance Of Intracranial Contents
 - Without Intracranial Pathology
 - Abnormal Elastance
 - Causes Include
 - Mass Lesions
 - Bleeding
 - CSF Volume
 - Air
 - Foreign Body

SYMPTOMS OF ↑ ICP

- Headache
- Nausea
- Vomiting
- Papilledema
- Focal neurologic deficits
- Cushing’s Triad
- Altered consciousness

INTRACRANIAL HYPERTENSION

- Sustained Increase In ICP Above 15 mmHg
- Causes
 - Increase in tissue or fluid mass
 - Interference with normal CSF absorption
 - Excessive cerebral blood flow
 - Increase in brain edema from systemic derangement of blood brain barrier
- ICP > 30 mmHg
 - Decrease in CBF
 - Vicious cycle
 - brain ischemia → brain edema → ↑ ICP → more brain ischemia

ANESTHETIC MANAGEMENT

- Location
 - Supratentorial vs. Intratentorial
 - Tentorium-“tent of the cerebellum”

INTRACRANIAL MASSES

- Methods Of Control
 - Decrease the volume of the brain
 - Diuretics
 - Corticosteroids
 - Decrease the volume of blood
 - Hyperventilation
 - Optimized Hemodynamics (MAP,CVP,PCWP, HR)
 - Positioning
 - Fluid restriction
 - Temperature control (CBF changes 5-7%/C)
 - Decrease the volume of CSF
 - CSF drainage
 - Surgical decompression
INTRACRANIAL MASSES

- Adult Tumors Are Supratentorial
 - Meningiomas
 - Glioblastomas
 - Neuroblastomas
- Childhood Tumors Are Infratentorial
 - Medulloblastomas
 - Cerebellar Astrocytomas
 - Intratentorial Ependymomas
 - Brain Stem Gliomas
- Primary vs. Metastatic

STEREOTACTIC NAVIGATION

- Three Dimensional Imaging
 - Localizes intracranial point in relation to the computed image, using CT, MRI or angiographic studies

STEREOTACTIC NAVIGATION

- Fiducial Markers Indicate Imaging Coordinates
- Coordinates Of Brain Are Automatically Calibrated To Coordinates Of System.

NEUROLOGIC MONITORING

- EEG monitoring
 - Used to monitor balance between oxygen supply and demand in cerebral cortex
 - EEG changes seen when CBF decreases from norm to 20 ml/100g/min
- Burst suppression
 - EEG pattern of periods of electrical silence interspersed with brief periods of activity
- EEG Is Sensitive To All Anesthetics
 - Volatile Agents Have Dose-dependent Suppressive Effect
 - < 0.5 MAC – CMRO₂ decreased
 - 1.0 MAC - ↓ frequency and max. voltage
 - Greater than 1 MAC - burst suppression and isoelectricity
 - 2.0 MAC – electrical silence
 - Opioids Have Minimal Effect On EEG And Evoked Potentials
NEUROLOGIC MONITORING

- Evoked Potentials
 - SSEP - Somatosensory Evoked Potential
 - Most common used nerves
 - Median (wrist)
 - Posterior tibial nerve (ankle)
 - Peroneal nerve (popliteal fossa or below the knee)
 - MEP - Motor Evoked Potential
 - Assesses Descending Motor Pathways

- EP Measurement
 - Latency
 - Amplitude

- Effected By Certain Anesthetics
 - NMR-avoid with use of MEPs
 - Volatile agents decrease amplitude and increase latency
 - N$_2$O-decreases amplitude
 - Changes in anesthetic depth misinterpreted as change attributed to tissue viability

ANESTHETIC MANAGEMENT: CHOOSING THE RIGHT ANESTHETIC

- Awake vs. General
 - Awake Craniotomy
 - Opportunity for brain mapping
 - Reduction in ICU care
 - Shorter hospital stay
 - General Anesthetic
 - Short acting anesthetics provide similar advantages to awake technique
 - Outcome data is not significant

- Barbiturates
 - ↓CBF And CMRO$_2$
 - Maintains Responsiveness To CO$_2$ Changes And Autoregulation
 - Provide Protection During Focal But Not Global Ischemia
 - Anticonvulsant Activity
 - Cause Robin Hood Or Reverse Steal Phenomenon
 - Facilitates CSF Absorption
 - Highly Effective In Lowering ICP

- Propofol
 - Dose-dependent Reduction In CBF
 - 40-60% Reduction In CMRO$_2$
 - Autoregulation And Responsiveness To CO$_2$ Changes Are Maintained
 - Anti-convulsant Effect
 - Reduces Or Has Minimal Effect On ICP
 - More Effective Than Thiopental In Attenuating Rises In MAP, CSF Pressure And CPP During Induction

- Dexmedetomidine
 - Selective Alpha$_2$-adrenoceptor Agonist
 - Slow Onset And Offset
 - Reduces MAC By 50%
 - No Change Or Minimal Decrease In ICP As Long As MAP Is Maintained
 - Does Not Alter Seizure Threshold
INDUCTION AGENTS

- **Etomidate**
 - Depresses CMR, CBF, And ICP
 - Decreases CMR In Cortex > Brainstem
 - Decrease CSF Production And Enhances CSF Absorption
 - Epileptogenic Properties
 - Increases EP Amplitude And Latency

- **Ketamine**
 - Dilates Cerebral Vasculature
 - Causes Marked Increases In CBF And CMRO$_2$
 - Impedes CSF Absorption

- **Benzodiazepines**
 - Midazolam
 - Drug Of Choice Due To Short Half-life
 - Lower CBF And CMR
 - Anticonvulsant Properties
 - Significant Decreases In CPP
 - Avoid In Elderly & Unstable Patients
 - Prolong Emergence (Renal Failure)

- **Remifentanil**
 - Acid Methyl Structure Susceptible To Esterase Metabolism In Blood And Tissues
 - Rapid Emergence
 - Increased incidence of hypertension
 - Consider transitional narcotics post-op
 - Permits Immediate Postoperative Neurologic Evaluation
 - No Effect On ICP

OPIOIDS

- Minimal Effects On CBF, CMR, And ICP
- Sufentanil Can Increase ICP
- Morphine Not Considered Optimal In Due To Poor Lipid Solubility
- Meperidine Avoided In Renal Failure Patient

INHALATIONAL ANESTHETICS

- Produce A Dose-dependent Decrease In Cerebral Metabolic Rate (CMRO$_2$)
 - Iso>>Des=Sevo
- Up To 50% Reduction In CMR With Isoflurane
- Produces EEG Burst Suppression In Higher Doses
INHALATIONAL ANESTHETICS

• Effect On Autoregulation

 - Increase In Cerebral Blood Flow (CBF)
 - Isoflurane > Desflurane > Sevoflurane
 - Minimal or no effect at 0.5 MAC
 - Hyperventilation can blunt the increase in CBF
 - Increased ICP In Presence Of Space Occupying Lesions
 - All Volatile Anesthetics Increase CBV
 - Easy To Monitor End-tidal Concentrations
 - N₂O Increases CBF And Increases CMRO₂

INHALATIONAL ANESTHETICS

• Sevoflurane

 - CBF And CMRO₂ Reduced 50% Below 1 MAC
 - Autoregulation And Responsiveness Of CBF To PaCO₂ Preserved
 - Dose Dependent Increase In ICP
 - Decrease In CVR
 - SSEP And EEG Are Suppressed In A Dose-dependent Fashion

INHALATIONAL ANESTHETICS

• Desflurane

 - Rapid Onset And Emergence
 - Decreases CMRO₂
 - At 0.5 MAC, Does Not Increase CBF Or CBV

EFFECTS OF ANESTHETICS ON MUSCLE RELAXANTS

- Succinylcholine Increases ICP
- Non-depolarizers Have No Clinically Significant Effects On CBF And CMRO₂
- Chronic Anticonvulsant Therapy-shorted Duration Of Action Of NDMR

Table 23-1. Comparative effects of anesthetic agents on cerebral physiology.

<table>
<thead>
<tr>
<th>Agent</th>
<th>CBF</th>
<th>CBF</th>
<th>CBF Production</th>
<th>CBF Absorption</th>
<th>CBV</th>
<th>ICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halothane</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>Enflurane</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
<td>! !</td>
</tr>
</tbody>
</table>

* T = Increase, ! = decrease, 0 = little or no change, ? = unknown, CBF = cerebral blood flow, CBV = cerebral blood volume, ICP = intracranial pressure.
THE FAST-TRACK APPROACH TO NEUROANESTHESIA

PRE-OPERATIVE ASSESSMENT
• Neurological Assessment Prior To OR
• Pre-operative Meds
 – Sedatives And Opioids Avoided
 – Steroids
 • Reduce cerebral edema
 • DO NOT improve outcome or lower ICP in face of head injury
 • Complications include hyperglycemia, infection, GI bleeding

PRE-OPERATIVE ASSESSMENT
• Pre-operative Meds
• Anti-epileptic Drugs
 • Dilantin (Phenytoin)
 – Infusion-related adverse reactions due to the sodium hydroxide, propylene glycol and alcohol content of the intravenous formulation
 – Extravasation reported when large doses of undiluted phenytoin are given through a small-bore catheter in a peripheral vein
 – Hypotension and arrhythmias related to rapid administration (> 50 mg/minute) rates
 • Cerebyx (Fosphenytoin)
 – Water-soluble pro-drug of phenytoin that is associated with fewer infusion-related events
 • Keppra (Levetiracetam)
 – Devoid of cardio-toxic effects
 – Acts by binding to synaptic plasma membrane in CNS
 – Inhibits burst firing without effecting normal neuronal excitability
 – Loading dose-1 gm/24 hours

PRE-OPERATIVE ASSESSMENT
• Anti-epileptic Drugs
 • Keppra (Levetiracetam)
 – Devoid of cardio-toxic effects
 – Acts by binding to synaptic plasma membrane in CNS
 – Inhibits burst firing without effecting normal neuronal excitability
 – Loading dose-1 gm/24 hours

MONITORING
• Standard Monitors Plus Arterial Line
 – Permits beat to beat monitoring, extrapolation of data to determine CPP
• Central Venous Line
 – Subclavian approach preferred
 – Indirect correlation of ICP in determination of CPP
 – Central route for vasoactive drugs
POSITIONING
- Positioned in head up position, either supine, lateral or prone
- HOB 30 degrees
 - Promotes gravitational drainage of blood and CSF
- Sitting craniotomies avoided unless access is not possible

IDEAL CHARACTERISTICS OF ANESTHETIC DRUGS
- Allow rapid onset and rapid emergence
- Maintain hemodynamic stability
- Not increase cerebral blood flow (CBF)
- Decrease cerebral blood volume (CBV)
- Decrease intracranial pressure
- Maintain CO2 reactivity
- Maintain cerebral autoregulation
- Allow for neurophysiologic monitoring of EP and EEG
- Does not increase cerebral metabolic rate (CMR)
- Has anti-convulsant properties
- Decreases cerebral edema
- Protects the brain from ischemia

INDUCTION
- Remifentanil-0.25ug/kg
- Propofol 1-2 mg/kg
- Rocuronium 0.6 mg/kg
- Tracheal intubation with reinforced tube

MAINTENANCE
- Remifentanil infusion -0.125 ug/kg/min
- Additional boluses as necessary
- Rocuronium infusion – 6-8 ug/kg/min
 - Based on train of four response
 - Not utilized during MEP monitoring
- Desflurane – 0.5 MAC
- If MEP monitoring is used
 - Consider not using volatile agents
 - Propofol infusion 100 ug/kg/min
 - No muscle relaxants after induction dose
- Hyperventilation
 - 25-30 mmHg
 - If ICP is elevated, 20-25 mmHg

PERIOPERATIVE HYPERTENSION
- Occurrence
 - Intubation
 - Injection of epinephrine containing solutions
 - Stimulation
 - Pin placement,
 - Incision and opening of the bone and dura
 - Emergence
- Vasoactive modulators
 - Epinephrine, norepinephrine, aldosterone, and cortisol.
 - Elevated in the absence of hypertension

MANAGEMENT OF PERIOPERATIVE HYPERTENSION
- Remifentanil 200ug with pin placement
- Hydralazine 10 mg -20 minutes before the end of the procedure
- Supplemented with labetalol 5-10 mg following the discontinuation of remifentanil
EMERGENCE

- Ondansatron-4mg
- Rocuronium Infusion Discontinued Prior To Scalp Closure
- Propofol Infusion Discontinued Following Closure Of Scalp
 - Small Amount Of Accumulation
- Remifentanil And Desflurane (If Utilized) Discontinued Prior To Removal Of Pins
- Transported To CT Scan 20 Minutes After Awakening And Arrival In PACU