Use of Viral Load Testing in Managing CMV Infections in SOTR

Angela M. Caliendo, MD, PhD, FIDSA
Professor and Vice Chair, Medicine
Alpert Medical School of Brown University
Providence, RI
Disclosures

Scientific Advisory Boards:
 Roche Molecular, Quidel, Cepheid, Mesa Biotechnology, bioMeriuxex

Clinical Trials:
 T2 Biosystems, Hologic
Overview

- Update on CMV viral load testing performance
- Clinical uses of viral load testing
- Role of cell mediated immunity tests
Quantitative CMV Testing

- Two commercial assays that are FDA approved
 - Cobas AmpliPrep/Cobas TaqMan Test (Roche)
 - artus CMV RGD MDx Test (Qiagen)
- Variety of CE Marked and ASR reagents
The WHO CMV International Standard

- Biological standard, cultured virus (Merlin Strain) in universal buffer
- Worldwide testing to assign a consensus value in international units
- Has the WHO International Standard Improved Agreement?
Multi-Center CMV Study
Post WHO International Standard

Clinical samples sorted by increasing geometric mean (GM) of results for each sample

Preiksaitis JK et al. CID 2016: DOI:10.1093/cid/ciw370
Intra-laboratory and Inter-laboratory variability

Preiksaitis JK et al. CID 2016: DOI: 10.1093/cid/ciw370
Amplicon Size

CMV DNA in plasma is fragmented

Preiksaitis JK et al. CID 2016: DOI:10.1093/cid/ciw370
Analysis of CAP Proficiency Data

• Surveys from 2013
 ▪ VLS and VLS2 surveys

• 504 laboratories reported CMV results in \log_{10} copies/ml

• 157 laboratories reported CMV results in \log_{10} IU/ml
Box plot of CMV viral load (IU/mL vs copies/mL)

RT Hayden, Y Sun, L Tang, GW Procop, DR Hillyard, BA Pinsky, SA Young, AM Caliendo. Manuscript in preparation
Box Plot of CMV viral load by assay in IU/mL

RT Hayden, Y Sun, L Tang, GW Procop, DR Hillyard, BA Pinsky, SA Young, AM Caliendo. Manuscript in preparation
Unnecessary variability: no standardized method to quantify secondary standards

Hayden et al. JCM 2015; 53:1500.
FIG 3 Regression analysis of real-time PCR measures compared against nominal values stratified by assay.

FIG 4 Regression analysis of real-time PCR measures compared against the average ddPCR measure stratified by assay.
Impact of Specimen Type

• Whole blood versus plasma

• Viral load values in most patients are about $1 \log_{10}$ higher in whole blood vs plasma
 - Some patients the difference was as great as $2 \log_{10}$
 - Occasionally plasma viral load was found to be higher than whole blood viral load

Reducing Variability Between Assays

- Report values in international units
 - Agreement of viral load values is improving with WHO international standard
 - Variability still exists
- Using commercial assays
 - The more complete the better (extraction, standards)
- Quantifying secondary standards with digital PCR
- Consistent specimen type
Clinical Uses of CMV Viral Load Testing

• Decisions regarding initiating preemptive therapy

• Hybrid approach
 ▪ Monitoring after a period of prophylaxis
 ▪ Increased use of prophylaxis has led to increased cases of late disease
 ▪ Difficult logistics

• Diagnosis of CMV disease
 ▪ What viral load correlates with disease
Clinical Uses of CMV Viral Load Testing

• Monitoring response to therapy
 ▪ Baseline viral load the day antiviral therapy is initiated
 ▪ Test weekly
 ▪ Treat at least two weeks, until 1 or 2 tests are below the limit of detection
 ▪ Can use secondary prophylaxis (high risk; D+/R-, high initial viral load, high net state of immunosuppression, lung transplant, GI tissue invasive disease)

• Assessing treatment failure, resistance
What viral load correlates with disease?
ROC Curve CMV VL: Liver Transplant

- PCR > 400 copies/ml - disease
 Sensi 100%, speci 47%, PPV 34%, NPV 100%

- PCR > 2,000 copies/ml - disease
 Sensi 91%, spec 75%, PPV 50%, NPV 99.6%

- PCR > 5,000 copies/ml - disease
 Sensi 86%, spec 87%, PPV 64%, NPV 96%

[A. Humar et al., Transplantation 1999, 68:1305-1311]
Prospective cohort study

- Derivation and validation cohort
- CMV sero-positive SOTR
- Excluded induction therapy with anti-lymphocyte antibody
- Testing every 2 weeks for 100 days, then every 4 weeks until 180 days
- Viral load test, Roche Light Cycler test (IU/ml)
 - Magna Pure Compact extraction
Table 2
Demographic characteristics of the patients.

<table>
<thead>
<tr>
<th></th>
<th>Derivation cohort</th>
<th>Validation cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients included, no. (%)</td>
<td>141</td>
<td>252</td>
</tr>
<tr>
<td>Age, median (range), year</td>
<td>53 (19–73)</td>
<td>55 (19–75)</td>
</tr>
<tr>
<td>Sex, men, no. (%)</td>
<td>92 (65.2)</td>
<td>164 (65.1)</td>
</tr>
<tr>
<td>Solid organ transplant, no. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>49 (34.8)</td>
<td>87 (34.5)</td>
</tr>
<tr>
<td>Liver</td>
<td>13 (9.2)</td>
<td>30 (11.9)</td>
</tr>
<tr>
<td>Heart</td>
<td>29 (20.6)</td>
<td>48 (19.1)</td>
</tr>
<tr>
<td>Episodes included, no. (%)</td>
<td>84</td>
<td>119</td>
</tr>
<tr>
<td>Preemptive therapy, no. (%)</td>
<td>29 (34.5)</td>
<td>60 (50.4)</td>
</tr>
<tr>
<td>CMV disease</td>
<td>9 (10.7)</td>
<td>9 (7.6)</td>
</tr>
</tbody>
</table>

Table 3
Real Time-PCR CMV performed.

<table>
<thead>
<tr>
<th>RT-PCR range (IU/ml)</th>
<th>Derivation cohort no. of samples (%)</th>
<th>Validation cohort no. of samples (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>267 (27.2)</td>
<td>288 (14.2)</td>
</tr>
<tr>
<td>≤1000</td>
<td>112 (11.4)</td>
<td>48 (2.4)</td>
</tr>
<tr>
<td>1001–3000</td>
<td>114 (11.6)</td>
<td>166 (8.2)</td>
</tr>
<tr>
<td>3000–10,000</td>
<td>26 (2.6)</td>
<td>59 (2.9)</td>
</tr>
<tr>
<td>10,001–200,000</td>
<td>13 (1.3)</td>
<td>15 (0.7)</td>
</tr>
<tr>
<td>≥200,001</td>
<td>2 (0.2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Negative</td>
<td>715 (72.8)</td>
<td>1734 (85.8)</td>
</tr>
<tr>
<td>Total</td>
<td>982 (100)</td>
<td>2022 (100)</td>
</tr>
</tbody>
</table>
Validation Cohort

<table>
<thead>
<tr>
<th>Threshold (IU/ml)</th>
<th>Specificity % (IC95%)</th>
<th>Sensitivity % (IC95%)</th>
<th>PPV % (IC95%)</th>
<th>NPV % (IC95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6319</td>
<td>93.0 (89.2-95.5)</td>
<td>55.6 (26.7-81.1)</td>
<td>21.7 (9.7-41.9)</td>
<td>98.4 (95.9-99.4)</td>
</tr>
<tr>
<td>4220</td>
<td>89.9 (85.6-93.0)</td>
<td>77.8 (45.3-93.7)</td>
<td>21.2 (10.7-37.8)</td>
<td>99.1 (96.9-99.8)</td>
</tr>
<tr>
<td>3983</td>
<td>89.9 (85.6-93.0)</td>
<td>88.9 (56.5-98.0)</td>
<td>23.5 (12.4-40.0)</td>
<td>99.6 (97.6-99.9)</td>
</tr>
<tr>
<td>3194</td>
<td>100 (70.1-100)</td>
<td>88.4 (83.9-91.7)</td>
<td>23.1 (12.6-38.3)</td>
<td>100 (98.9-100)</td>
</tr>
</tbody>
</table>

• Median viral load with disease: 5550 IU/ml
• 2 patients had disease with a viral load below the cutoff
 ▪ 3324 IU/ml: gastritis in renal transplant
 ▪ 1930 IU/ml: gastritis in liver transplant
• 1 of 393 patients developed disease without viremia
 ▪ Gastritis in liver transplant
Issues to Consider

- Plasma based assay
 - Results with whole blood will be higher in most cases, on average $1\log_{10}$
- This cut-off applies to low risk SOTR
- Cut-off is likely specific to the assay, including the extraction method.
 - IU/ml helps but does not completely eliminate variability
What is a significant change in a viral load value?

Are those viral load values really any different?

Need to know the reproducibility of the assay.
Changes in viral load of 3-5 fold

Cobb, Lee, Boisvert, Duncan, Baum, Do, Caliendo, Asberg, Yao, Razonable unpublished data
Current state: CMV genotypic testing

- Sequencing of UL97 and UL54 genes directly from plasma sample
 - Need a viral load of at least 1000 IU/ml
 - Next generation sequencing
- Need to know the genetics of resistance
- Results are available in ~1 week
- Identifying at risk patients
 - Persistent viral load, increasing VL
 - Prolonged drug exposure (median 5-6 mos)
 - D+R- , lung transplant recipients

Mutations causing low and high level resistance

GCV = ganciclovir; FOS = foscarinet; CDV = cidofovir
[1] Symptomatic disease or viral load not improving
[2] Full dose GCV = 5 mg/kg bid i.v.
 High dose GCV = 10 mg/kg bid i.v.
 (adjust doses for renal function)

Tests of Cell Mediated Immunity

- Interferon-γ release assays
 - QuantiFERON-CMV
 - Measures release of interferon-γ by CD8+ T-cells after stimulation with CMV specific antigens
 - ELISpot
 - Detects release of interferon-γ by CD4+ and CD8+ T-cells in CMV antigen-stimulated PBMCs
ELISPOT assisted analysis

- Microtiter plate
- T cells + peptide
- Anti-IFN-γ antibody
- HRP-labelled antibody

1. Wash off cells
2. Add HRP substrate
3. Harvest plasma and test IFN-γ levels using ELISA
4. Read absorbance and analyse results using computer-based software

QuantiFERON®-CMV assisted analysis

- No peptides (control)
- HCMV peptides
- Mitogen control

Incubate tubes at 37°C for 16-24 h
Pre-transplant risk stratification in sero-positive patients

• Prospective study, lung and renal transplants
 ▪ 11/11 R- where non-reactive (QuantiFERON)
 ▪ 30/44 R+ reactive, 14/44 R+ non-reactive

• R+ nonreactive 7/14 (50%) developed post-tx CMV replication versus 4/30 (13%) in R+ reactive

• R+ lacking CMI have increased risk of reactivation
 ▪ Clinical trial going on to determine if these patients should be managed as high risk

Cartisán S et al. AJT 2013;13:738
Late onset CMV, after discontinuing prophylaxis

- High risk patients enrolled
 - D+/R-, R+ with thymoglobulin induction therapy, lung transplant (except D-/R-)
 - QuantiFERON CMV at baseline, 1, 2 and 3 months post transplant
 - 108 patients, D+/R+ = 39, D-/R+ = 34, D+/R- = 35
 - 18 developed symptomatic CMV disease
 - Patients received prophylactic therapy

Kumar D AJT 2009;9:1214
Monitoring CMI may be useful in predicting late onset CMV disease
Assessment of Cytomegalovirus-Specific Cell-Mediated Immunity for the Prediction of Cytomegalovirus Disease in High-Risk Solid-Organ Transplant Recipients: A Multicenter Cohort Study

- Adult SOTR, D+/R- patients who received prophylaxis
- QuantiFERON CMV testing end of prophylaxis, 1 and 2 months

<table>
<thead>
<tr>
<th>QT Result</th>
<th>No. (%)</th>
<th>CMV Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>31 (25%)</td>
<td>6.4%</td>
</tr>
<tr>
<td>Negative</td>
<td>81 (65%)</td>
<td>22%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>12 (10%)</td>
<td>58%</td>
</tr>
</tbody>
</table>
Figure 2. Kaplan-Meier curves of the incidence of cytomegalovirus (CMV) disease according to the result of the Quantiferon-CMV assay. A, Positive vs negative vs indeterminate result of the assay (log-rank test, \(P<.001\)). B, Positive vs nonreactive result of the assay (log-rank test, \(P=.024\)). Abbreviation: CMV, cytomegalovirus.
Spontaneous Clearance of Asymptomatic CMV Viremia

• Prospective study SOTR, developed asymptomatic low level viremia, not requiring antiviral therapy

• CMI measured shortly after viremia and longitudinally (QT assay)

• 37 patients
 ▪ Median viral load 1140 copies/ml
 ▪ Spontaneous clearance:
 • +QT 24/26 (92%); -QT 5/11 (46%)

Viral load, CMV-specific T-cell immune response and cytomegalovirus disease in solid organ transplant recipients at higher risk for cytomegalovirus infection during preemptive therapy

Cecilia Martín-Gandul,¹,²* Pilar Pérez-Romero,¹,²* Pilar Blanco-Lobo,¹,² Omar J. Benmarzouk-Hidalgo,¹,² Magdalena Sánchez,¹,² Miguel A. Gentil,²,³ Carmen Bernal,⁴ José M. Sobrino,⁵ María J. Rodríguez-Hernández,¹,² Elisa Cordero¹,² and The Spanish Network for Research in Infectious Diseases (REIPI)

D+/R- SOTR

Summary

• Agreement of viral load values is improving with WHO international standard
 ▪ Variability still exists
 ▪ Reduce with commercial assays, standard specimen type, quantifying standards with digital PCR

• Some data on cut-off for preemptive therapy in IU/ml, still assay dependent (~4000 IU/ml)
Summary

- CMI (QuantiFERON CMV) testing
- Accumulating data on utility when used with viral load testing
 - Pre-transplant risk stratification in sero-positive pts
 - Assessing risk of late-onset CMV disease after antiviral prophylaxis
 - Predicting patients likely to spontaneously clear asymptomatic viremia (DNAemia)