Tick-borne Diseases
Texas Nurse Practitioners
San Antonio Sept. 4-7, 2014
Elizabeth Maloney, MD

Familiar Situation?
- Mom removed this from 4 y.o. son
 - Thinks it’s a tick
 - Wants you to act
- What should you do?
 1. Identify contents
 2. Review which diseases associated with it
 3. Develop treatment plan

Learning Objectives
- Goal: Improve tick-borne disease management
 - Early recognition of disease
 - Appropriate treatment
- Content
 - Review common US tick species
 - Review tick-borne illness
 - Presentation, lab eval, treatment

Conflict of Interest Disclosure:
President of Partnership for Healing and Health, Ltd.
Provider of continuing medical education courses on tick-borne diseases

Common Hard Tick Vectors
- 9 Ticks
 - Ixodes
 - I. scapularis, I. pacificus, I. cookie
 - Eastern blacklegged, Western blacklegged, Groundhog
 - Dermacentor
 - D. variabilis, D. andersoni, D. occidentalis
 - American Dog, Rocky Mountain Wood, Pacific coast
 - Amblyomma
 - A. americanum, A. maculatum
 - Lone Star, Gulf Coast
 - Rhipicephalus sanguineus
 - Brown dog tick

Tick Identification
- Appearance
- Range
 - Travel history important

16 Tick-transmitted Diseases
- Anaplasmosis
- Ehrlichia muris-like
- Ehrlichiosis
- Babesiosis
- Borrelia miyamotoi
- STARI
- Rocky Mountain spotted fever
- Rickettsia parkeri rickettsiosis
- Bartonellosis
- Lyme disease
- Tularemia
- 364D rickettsiosis
- Colorado tick fever
- Q fever
- Heartland virus
- Powassan disease
- Rocky Mountain spotted fever
- Rickettsia parkeri rickettsiosis
- Bartonellosis

Photos courtesy of CDC
© 2014 Elizabeth Maloney, MD
Tick Ranges: US

East Black
West Black
American Dog
Rocky Mountain
Wood
Pacific coast
Lone Star
Gulf Coast
Brown dog

Tick Ranges: Texas

5 tick species
- 4 concentrated in east TX
 - Eastern blacklegged
 - American Dog
 - Lone Star
 - Gulf Coast
- Brown dog throughout

Lone Star Tick

Amblyomma americanum

Transmits
- Tularemia
- Heartland virus
- HME – human monocytic ehrlichiosis
- STARI – southern tick-associated rash illness

Black-legged Ticks

Ixodes scapularis,
I. pacificus, I. cookie

Diseases vary by species

<table>
<thead>
<tr>
<th>Tick Species</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ixodes scapularis</td>
<td>Lyme, Anaplasmosis, Babesiosis, Ehrlichia microti-like disease, Powassan encephalitis, E. miyamotoi disease, Bartonellosis</td>
</tr>
<tr>
<td>Ixodes pacificus</td>
<td>Lyme, Anaplasmosis, Babesiosis, Ehrlichiosis, Bartonellosis</td>
</tr>
<tr>
<td>Ixodes cookie</td>
<td>Powassan encephalitis</td>
</tr>
</tbody>
</table>

American Dog Tick

Dermacentor variabilis

Transmits
- Tularemia
- Rocky Mountain Spotted Fever

James Gathany
Transmits
- Tularemia
- Rocky Mountain Spotted Fever

http://www.cdc.gov/ticks/geographic_distribution.html
Tick-borne Diseases

- Tick-borne disease (TBD)
 - Includes all tick-transmitted diseases
 - Co-infections
 - Subset of TBD
 - Pathogens transmitted by Eastern blacklegged tick
 - Potential of other TBD complicate
 - Diagnosis: overlapping symptoms altering presentations when multiple present
 - Treatment: may require antibiotic combinations apparent failure due to undiagnosed TBD

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme</td>
<td>Eastern, Western blacklegged</td>
</tr>
<tr>
<td>Anaplasmosis</td>
<td>Eastern, Western blacklegged</td>
</tr>
<tr>
<td>Babesiosis</td>
<td>Eastern, Western blacklegged</td>
</tr>
<tr>
<td>B. miyamotoi disease</td>
<td>Eastern blacklegged</td>
</tr>
<tr>
<td>Ehrlichiosis</td>
<td>Lone star, Western blacklegged</td>
</tr>
<tr>
<td>Rocky Mountain spotted fever</td>
<td>American dog, Brown dog, Rocky Mountain wood</td>
</tr>
<tr>
<td>Rickettsia parkeri rickettsiosis</td>
<td>Gulf coast</td>
</tr>
<tr>
<td>STARI</td>
<td>Lone star</td>
</tr>
<tr>
<td>Bartonellosis</td>
<td>Eastern, Western blacklegged</td>
</tr>
<tr>
<td>Tularemia</td>
<td>Lone star, Rocky Mountain wood, American dog</td>
</tr>
</tbody>
</table>
Rocky Mountain Spotted Fever

- Rickettsia rickettsi

- Very severe illness; most hospitalized
 - Incubation: 1-2 weeks

- Bacterium invades endothelial cells
 - Vascular leaks; subsequent exhaustion of clotting ability
 - Organ failure and tissue necrosis

- Symptoms
 - Early: sudden onset of fever, nausea, vomiting, muscle pain, lack of appetite
 - Adults: severe headache (universal); photophobia
 - Kids: abd. pain, altered mental status, injected conjunctiva

- Rash
 - 2-4 days after fever onset
 - Pink macules on the ankles, wrists, or forearms
 - 90% of kids
 - 10% of all pts have no rash
 - Classic petechial rash: 5-6 days
 - 35-60%; indicates severe disease

- Lab findings
 - Acute: No readily available tests
 - Culture: specialized laboratories
 - PCR or immunohistochemical (IHC) staining of rash biopsy
 - Confirmatory: acute and convalescent IgG IFA titers

- Treatment: Doxycycline* 100mg twice daily
 - Begin when RMSF first suspected
 - Optimum duration unknown; usually 7-14 days
 - Continue at least 3 days beyond fever cessation
 - Usual fever gone within 72 hours

- Long-term sequelae
 - If vasculitis: expect end-organ damage, tissue necrosis
 - Profound neurological deficits, diminishes renal function, amputations
 - No vasculitis: full recovery within days to months.

* Short courses of doxycycline safe for all children.
Human Monocytic Ehrlichiosis — *Ehrlichia chaffeensis*

- Potentially serious infection
 - 2-3% mortality
 - Incubation: 1-2 weeks
 - Location: SE and south-central states
- Bacterium invades monocytes
- Symptoms
 - Chills, fever, headache, muscle aches
 - Nausea
 - Fine petechial rash
 - 66% of kids, 30% of adults

- Treatment: Doxycycline 100mg twice daily
 - Begin when disease first suspected
 - Optimum duration unknown; usually 7-14 days
 - Continue at least 3 days beyond fever cessation
 - Usually fever gone within 72 hours

- Long-term sequelae
 - Usually none

Lab findings
- Direct evidence
 - Acute: Morulae in monocytes
 - Seen in 20% in first week
 - Culture: specialized laboratories
 - 85% have neg IFA titer in first 10 days
 - Confirmatory
 - PCR: acute and convalescent titers
- Indirect
 - Low WBC count, low platelets, elevated liver enzymes

Clinical diagnosis

Human Ewingii Ehrlichiosis — *Ehrlichia chaffeensis*

- Invades PMNs, otherwise very similar to HME

Lab findings
- Direct evidence
 - Acute: Morulae in PMNs
 - Seen in 20% in first week
 - Culture: specialized laboratories
 - 85% have neg IFA titer in first 10 days
- Confirmatory
 - PCR: acute and convalescent titers

Clinical diagnosis

Anaplasmosis — *Anaplasma phagocytophilum*

- Potentially serious infection
 - < 1% mortality
 - Incubation: 1-2 weeks
 - Location: Midwest, northeast
 - Transfusion-related cases
- Bacterium invades PMNs
- Symptoms
 - Chills, fever, headache, muscle aches, nausea, abdominal pain, cough, confusion
 - Rash in < 1%

- Treatment: Doxycycline 100mg twice daily
 - Begin when HGA first suspected
 - Optimum duration unknown; usually 7-14 days
 - Continue at least 3 days beyond fever cessation
 - Usually fever gone within 72 hours

Lab findings
- Direct evidence
 - Acute: Morulae in PMNs
 - Seen in 20% in first week
 - Culture: specialized laboratories
 - 85% have neg IFA titer in first 10 days
 - Confirmatory
 - PCR: acute and convalescent titers

Clinical diagnosis
Babesiosis

— Babesia microti, B. duncani, B. divergens

- Potentially serious infection
 - Mortality in immunocompromised
 - Incubation: weeks - months
 - Location: Midwest, northeast
 - Acute and chronic disease:
 - also transfusion-related and congenital cases
- Parasitizes red blood cells (RBCs)
 - Form varies by life-stage
- Symptoms
 - Malaria-like: fever, chills, sweats, muscle pain, joint pain, anorexia, nausea, vomiting

Findings

- Splenomegaly, hepatomegaly, jaundice.

Lab findings

- Direct evidence
 - blood smear
 - serology
 - few strain-specific
 - PCR, FISH (?)
- Indirect evidence
 - Results consistent with hemolytic anemia
 - Eosinophilia

Treatment

- Based on observational, not trial data
- 7 day minimum of
 - Atovaquone 750 mg po BID + Azithromycin: 500 – 1000mg day 1, then 250 -1000 daily or Clindamycin 600 mg po TID + quinine 650 mg po TID
- Other potentially useful agents
 - Atovaquone/proguanicil (Malarone) 250/100 tabs, 1 BID may be reasonable substitute for atovoquone
 - Artemisia – herb used for malaria

Bartonellosis

— multiple Bartonella species

- Emerging diseases
 - Incubation:
 - Location: presumably in ranges of I. scapularis and I. pacificus
- Invades endothelial cells

Symptoms

- Fever, fatigue, headache, visual changes, disorientation, balance issues, ataxia, insomnia, joint pain, myalgia, numbness, cognitive deficits, poor memory, sore throat, sore soles

Findings

- Widespread, depending on infected tissues
 - Lymphadenopathy
 - Sina

Lab

- Serology for B. henselae
 - May pick up cross-reacting antibodies
- PCR
- Culture-enriched PCR

Treatment – optimal treatment unknown

- Doxycycline, azithromycin, rifampin, fluoroquinolones

Borrelia miyamotoi disease

— Borrelia miyamotoi

- Recently recognized pathogen
 - Relapsing fever species
 - Incubation:
 - Location: presumably over I. scapularis range
- Bacterium invades numerous tissues

Symptoms

- Fever, fatigue, headache, chills, myalgia, arthralgia, nausea
- EM-like rash in < 10%
No clinically available tests
- PCR tests under development; serology needs validation
- Culture methods unsuccessful

Treatment
- Doxycycline 100mg BID x 2 weeks
- No trial data

STARI

- Pathogen unknown
 - *Not Borrelia lonestari*
 - Incubation: 7 days
 - Location: Within range of Lone star tick

- Symptoms
 - Similar to Lyme: EM-like rash, fever, headache
 - Stiff neck, myalgias, joint pain

- Lab
 - No available diagnostic tests

Tularemia

- *Francisella tularensis*

- Multiple transmission routes
 - Tick and deer fly bites, contaminated water
 - Skin contact with infected animals, inhalation

- Tick transmission non-fatal
 - Location: South central, northwest, parts of Massachusetts

- Symptoms
 - Ulceroglandular form: skin ulcer at bite site, lymphadenopathy of regional nodes

Lab

- Culture, immunohistochemical staining, PCR, direct fluorescent antibody, acute and convalescent titer

Treatment

- Same oral agents and duration as Lyme
 - No trial evidence
 - Rash phase – optimum duration unknown, 21 days common
 - Doxycycline 100 mg BID
 - Amoxicillin 500 mg TID

Lab

- Culture, immunohistochemical staining, PCR, direct fluorescent antibody, acute and convalescent titer

Treatment

- Streptomycin or gentamycin for 10d
- Tetracyclines for 14d
- Ciprofloxacin
Prevention

Avoid tick-bites
- Be aware of tick habitats; avoid when possible
 - Live, work, play
- Make smart clothing choices
 - Limit skin exposure
 - Post-exposure: 60 min in dryer, high heat
- Pretreat clothing and gear with permethrin
 - Highly effective for 2-6 weeks; safe
- Use repellents on exposed skin
 - Picaridin, DEET, BoUD
 - Higher concentrations than for mosquitoes

Tick checks post exposure
- Find ticks before disease transmission
- Transmission times vary by pathogen
 - Powassan <15 min, Anaplasma, babesia < 24 hours
 - Lyme >24 hours

Antibiotic prophylaxis may be appropriate
- Lyme and possibly anaplasma
 - Doxycycline 100 mg twice daily for 10 - 20 days
- Contra-indicated for RMSF

Summary
- Several tick species transmit disease
 - Most species transmit multiple pathogens
- Wide range of disease severity
 - Mild to life-threatening
 - Disease incidence correlates with vector ranges
- Most diagnoses made on clinical grounds
 - Prompt diagnosis is critical; clinicians need high index of suspicion
 - Additional lab methods needed
- Antibiotic regimens vary; doxycycline treats most
 - Lyme, RMSF, spotted fever, ehrlichiosis, anaplasmosis, B. miyamotii disease, STARI, tularemia, bartonella

Preventive measures should be encouraged
- Relatively simple yet effective
- Tick bite avoidance strategies work across all tick species

An ounce of permethrin is worth a pound of antibiotics

Thank you