Using Integrated Catchment Modeling (ICM) Dynamic Analysis for Wildcat Branch

Terry M. Barr, P.E., CFM
Corey Branson, P.E., CFM
Halff Associates, Inc.
TFMA Spring Conference
Irving, TX
May 29, 2014

Presentation Agenda
- Project Background
- Steady Modeling Approach
- Specific Areas of Concern
- ICM Model Construction
- Pros and Cons
- Comparison to HMS/RAS
- Flood Mitigation
- Questions

Project Location
Project Background

- Approx. 3.3 Sq. Miles
 - Wildcat 1.8 sq. mi.
 - Dunbar 1.5 sq. mi.
- Drains to Lake Arlington
- Primarily Residential
 - Single Family
 - Low Density Residential
 - Industrial
 - Parks and Institutional
- Several Areas with Frequent Flooding

Project Background

- FW Open Channel Studies
- FEMA Effective Zone AE
- Small Section of Zone A
- Established Floodway
- Study Intent
 - Update Floodplain and Floodway based on recent data
 - Evaluate Improvement Alternatives
 - Recommend CIP

Steady Modeling Approach

- Hydrologic Analysis (HEC-HMS)
 - Basin Delineation, Parameter Development
 - NRCS Loss and Unit Hydrograph Methods
 - Modified-Puls Routing
 - Flow Diversion
Steady Modeling Approach

- Hydraulic Modeling (HEC-RAS)
 - Section Layout Based on Assumed Flow Direction
 - Split Flow Optimization at Mt. Tabor
 - Roughness Values Based on Aerials and Field Observation
 - Structures Surveyed for Accuracy

Areas of Concern

- Overflow at Ramey Ave
- Overflow at Crenshaw
- Lateral Spill at Mt. Tabor
- Left Overbank Flow
- Flow Along Berry St.
- Flow Under IH-820E

Steady Modeling Limitations

- Flow in Multiple Directions
 - Parallel/Split Channels
- Overland Flow Challenges
- Volume and Detention
- Calculation Assumptions
 (Standard Step vs Dynamic)
- Mapping Assumptions

Traditional drainage calculations require the engineer to make assumptions about these issues... these may be over-simplified, very conservative, or just plain wrong.
Benefits of 2D Analysis

- **Hydrology** – Uses full hydrograph
 - Account for differences in timing
 - Evaluate surface flow patterns accurately
- **Hydraulics** – Realistic 1D/2D interaction
 - Complex overland flow directions
 - Break over from one stream to another
 - Storage in low-lying areas and impoundments
 - Split flow situations and relief channels
- **Look at the system as a whole**
 - Gain a better understanding of flow patterns for HMS/RAS
 - Optimize the solutions to reduce project costs

InfoWorks ICM Model

- **Integrated Catchment Modeling** – Combines Urban Storm Sewer and Riverine Flow in 1D/2D Hydrodynamic Model
- **Capabilities** – Closed Conduit and Overland Interaction
 - 1D Storm Sewer
 - 1D Stream Channels
 - 2D Overland Flow
 - Hydrology

ICM Model Construction

- **Ground Model Import**
- **Construct River Reaches**
- **Add Flow Information**
- **Add Roughness Polygons**
- **Add Voids**
- **Add Breaklines**
- **Generate 2D Mesh**
- **Add Bridges/Culverts**
- **Run/Troubleshoot**

Dynamic River Modeling is an Iterative Process... Fix, Run, Crash, Repeat
Modeling Misconceptions

- If the Model Runs Then It is Good
- Check and Re-Check
 - Volume Balance
 - Stability
- Engineering Judgment
 - Do the Results Make Sense?
- It is a Black Box (Don’t Know How It Gets the Answer)
- Run Hand Calculations
- Runs the Same Calculations as RAS/HMS

InfoWorks ICM Cons

- Inputting Bridge/Structure is not User Friendly
- Bridge Opening Shapes are Somewhat Complicated, Especially Custom
- Supposed to Look Like RAS, but Still Quite Different
- Bridge Entrance/Exit for Bridge Routine
- River Reaches are One Feature, Not Cross Sections
 - Stability Issues Difficult to Pinpoint Within a Reach
- Bank lines can get complicated when splitting river reaches because they are separate features from the reach and must be split as well
- Inflows Applied at Nodes, Not Sections (Objects)

InfoWorks ICM Pros

- Wide Range of Capabilities
 - Integrated Storm Sewer, Rivers, Open Channel, Overland
- RAS Import Capabilities
- Connecting River and Mesh is Easier than in IWRS
- Cut XS and Banklines Directly from Terrain
- Better Editing Tools than SD/RS, Undo Function, Snap, etc.
- 3D Viewing
Data and Model Organization

- Version Control (for Building Model)
- History of Committed Changes
- Branch from the History
- Scenarios (for What-if's)
 - Allow Testing of Different Scenarios Without Creating a New Version
 - Re-integrate the Scenarios Back into the Base Version or Delete
- Transportable Database
 - Submitting a Model is Streamlined
 - One Single File for Entire Model
 - Multiple Alternatives, Multiple Runs, Results, etc.

ICM Model Results

- Flow Rates Similar at Most Locations
- Inflow Hydrographs
- Hydraulic Routing
- WSEL Generally Lower
- Routing Differences
- Assumptions about timing
- Differentiated in Inundation Areas
- Overland Flow Patterns
- Standard Step vs. 2D Flow

<table>
<thead>
<tr>
<th>Location</th>
<th>RCS 100-yr Flow (cfs)</th>
<th>ICM 100-yr Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramey</td>
<td>2370</td>
<td>2389</td>
</tr>
<tr>
<td>City of Village Creek, Sr</td>
<td>2859</td>
<td>2838</td>
</tr>
<tr>
<td>City of Wales</td>
<td>2996</td>
<td>2974</td>
</tr>
<tr>
<td>ICM 200</td>
<td>3335</td>
<td>2796</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>RCS 100-yr WSEL (ft)</th>
<th>ICM 100-yr WSEL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/S of Ramey</td>
<td>628.1</td>
<td>628.0</td>
</tr>
<tr>
<td>At the Mt. Tabor Overflow</td>
<td>615.8</td>
<td>615.5</td>
</tr>
<tr>
<td>U/S of Village Creek Dr</td>
<td>607.3</td>
<td>605.9</td>
</tr>
<tr>
<td>U/S of Dillard St</td>
<td>598.0</td>
<td>596.3</td>
</tr>
<tr>
<td>U/S of IH-820</td>
<td>575.5</td>
<td>574.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>RCS Location (In Channel)</th>
<th>ICM Location (In Channel)</th>
<th>RCS Location (Overland Areas)</th>
<th>ICM Location (Overland Areas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramey</td>
<td>618.3</td>
<td>618.2</td>
<td>616.7</td>
<td>616.8</td>
</tr>
<tr>
<td>Mt. Tabor Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berry St near Dillard Ave</td>
<td>598.0</td>
<td>596.3</td>
<td>598.0</td>
<td>598.0</td>
</tr>
</tbody>
</table>
ICM Results - Areas of Concern

- Overflow at Ramey Ave
- Overflow at Crenshaw
- Lateral Spill at Mt. Tabor
- Left Overbank Flow
- Flow Along Berry St.
- Flow Under IH-820E

Mapping Changes

- Mapping is based on the intersection of a water surface TIN or Grid with the terrain.
- Top widths must match so not much flexibility
- Used shallow flooding to identify flood prone areas outside the “floodplain”
Flood Mitigation

- Improvement Alternative Evaluation
- Channel Improvements
- Detention Facilities
- Structure Improvements

- Improve Future Development?
 - Mt. Tabor Site
 - Linear Parks
 - Model Expansion (SD)
 - Area Redevelopment

Questions?