FOG RECEIVING, PRETREATMENT AND ANAEROBIC CODIGESTION
DERRY TOWNSHIP MUNICIPAL AUTHORITY CLEARWATER WWTP, HERSHEY, PA

PRESENTED TO THE VWEA COLLABORATIVE BIOSOLIDS: FUEL FOR THOUGHT WORKSHOP

Wayne A. Schutz
Derry Township Municipal Authority
May 11, 2017
A. DTMA Organization & WWTP Facilities Overview
B. Hauled Wastewater [Septage] Receiving
C. Evolution & Current Handling of FOGW
D. FOGW Codigestion
E. BioGas Utilization
 1. Steam Biosolids Dryer
 2. Combined Heat & Power (CHP) Facilities
F. Future Plans
ORGANIZATION & FACILITIES

- Operating Authority – Staff of 36
- Two Wastewater Treatment Facilities
 - Clearwater WWTP - 5.02 MGD
 - Southwest WWTP - 0.6 MGD (“Unmanned” Satellite WWTP)
- Fourteen Pumping Stations
- 150+ Miles of Sanitary Sewer (6” to 48” DIA)
- NEW FOR 2017 – STORMWATER MANAGEMENT
 (Another whole presentation!!)

VWEA
Virginia Water Environment Association
FIGURE 1
PROCESS FLOW DIAGRAM
DERRY TOWNSHIP MUNICIPAL AUTHORITY
CLEARWATER ROAD WASTEWATER TREATMENT FACILITY
AERIAL VIEW
MAJOR LIQUID STREAM COMPONENTS

- 5.02 MGD Activated Sludge
 - Septage Receiving
 - **FOG PRETREATMENT**
 - Preliminary Treatment
 - Screening & Grit Removal
 - Primary Clarification
MAJOR LIQUID STREAM COMPONENTS

- Activated Sludge
- Mechanical Aeration (Flexible Control)
- Biological Nitrogen Removal (Chesapeake Bay compliant)
 - \((A_2O: \text{anoxic} \sim \text{oxic} \sim \text{anoxic} \sim \text{re-aeration})\)
- Ferric Chloride \((\text{FeCl}_3)\) Addition for “P” Removal
- Enhanced Final Clarification (EDIs & Stamford Baffles)
- UV Disinfection
• Sludge / Biosolids Processing Facilities
 • Gravity Thickening - Primary Sludge
 • DAF – WAS
 • Hershey IPF Sludge
 • Anaerobic Sludge Digestion (two stage + storage)
 • Centrifuge Dewatering
 • Indirect Paddle Dryer
 • Class A – “EQ” Beneficial Reuse
 • Storage & Sale
2016 Sludge Production

<table>
<thead>
<tr>
<th>Source</th>
<th>Volume (DT/D)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Sludge</td>
<td>4.75</td>
<td>54</td>
</tr>
<tr>
<td>Was</td>
<td>2.86</td>
<td>32</td>
</tr>
<tr>
<td>IPF Sludge</td>
<td>1.02</td>
<td>11</td>
</tr>
<tr>
<td>DTMA SW WWTP</td>
<td>0.24</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>8.87 (3,238 DT/Y)</td>
<td></td>
</tr>
</tbody>
</table>

(Includes estimated 1.2 DT/D (~14%) from Septage / FOG Pretreatment)

Anaerobic Digestion

<table>
<thead>
<tr>
<th>Digested Biosolids</th>
<th>4.13 (1,512 DT/Y)</th>
<th>53</th>
</tr>
</thead>
</table>
HAULED WASTEWATER RECEIVING

- Septage Receiving
 - Started in August 1991
 - “If you build it they will come!”
- Current Receiving Station
 - Completed in 2000
 - Two Lane, Hauler Kiosk & DTMA Operator Station
 - Lime addition to settle load in primaries
 - Screening & Grit Removal via WWTP Headworks
• Originally Refused FOG Wastewaters (FOGW)
 • Grease was loosely define as 750 mg/l FOG
• FOGW Acceptance “Evolution”
 • Accepted FOGW from Derry Restaurants
 • Requested FOGW be diluted
• Problems, Problems, & PROBLEMS
 • Build up of Grease on Primary Clarifier baffles, weirs, beaches & in the PC center wells.
 • 30 – 40 CY removed from each PC every 3 months
 • Plugging Primary Sludge Line
 • Tear down & flush line every month
 • Visible grease “specks” in digested BFP cake
FOGW PRETREATMENT - GENESIS

• Accumulation in Primary Clarifier Scum Pit
 • Genesis of pretreatment idea
 • Pilot “Digestion” in Scum Pits
 • Bugs, soda ash, & mixing/aeration

• Design Concept for Aerobic Grease Pretreatment
 • KISS
 • Incorporate into existing septage receiving station
 • Provide 48-72 hours of detention (40,000 gal tank)
 • Computer controlled fill & draw
 • Decant MLSS to WWTP Headworks
FOGW PRETREATMENT DESIGN

• Final Design
 • Chopper Pumps (2)
 • **Aeration** (Venturi w/ draft tube)
 • **Mixing** (floor mounted mixing nozzles)
 • MLSS removal via tank level controlled wasting valve
• Addition of Bacteria Delivery System
 • ECOBIONICS™ Biogenerator
BioGenerator1 System Fact Sheet

Operation at the DTMA AGPD

- Four BioGenerators
- 24 Hour incubation cycle
- Daily dose of approximately 30 trillion microbes per BioGenerator
- Dose at 6 AM, 12 noon, 6 PM & 12 midnight

MICROBE SELECTION

- All Class 1 Organisms (no pathogens)
- High Enzyme producers

1. Information Courtesy of Ecobionics, a division of NCH Corporation
FOGW PRETREATMENT BACTERIA

SUMMARY OF MICROBES

1. Information Courtesy of Ecobionics, a division of NCH Corporation

<table>
<thead>
<tr>
<th>GENUS SPECIES</th>
<th>CAS #</th>
<th>CLASS</th>
<th>ENZYMES/FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas fluorescens</td>
<td>68332-93-4</td>
<td>Aerobic</td>
<td>Lipase - Multiple Enzyme Sys.</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>68332-91-4</td>
<td>Aerobic</td>
<td>Lipase - Multiple Enzyme Sys.</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>68038-70-0</td>
<td>Aerobic</td>
<td>Protease – Amylase</td>
</tr>
<tr>
<td>Bacillus licheniformis</td>
<td>68038-66-4</td>
<td>Facultatively Anaerobic</td>
<td>Protease – Amylase Cellulose</td>
</tr>
<tr>
<td>Bacillus thuringiensis</td>
<td>68038-71-1</td>
<td>Facultatively Anaerobic</td>
<td>Protease – Amylase Lipase</td>
</tr>
</tbody>
</table>
• FOGW Pretreatment Facility
 • Completed in 2005
 • Aerated & Mixed “Batch Reactor” Tank
 • Fill & Draw
 • Lime addition for pH Control
 • Screening & Grit Removal via WWTP Headworks
• BUT it was/is a work in progress.....
• Post Construction Improvements
 • Grinder/macerator on truck discharge to FOGW discharge connection.
 • Rock trap in front of macerator.
 • Mixing Nozzles Modifications
 • Scum / Foam Control
 • At optimal conditions of pH = 7 and D.O. >1.0, the foam/scum becomes problematic.
• pH Adjustment required due to VFA
 • Original
 • Lime addition; manual control (litmus pH paper)
 • Too much settling
 • Current
 • Magnesium Hydroxide addition; automatic control (pH probe)
2016 Totals – 20.17 MG (~70,500 GPD)
- Septage & Other - 16.11 MG (~56,300 GPD)
- FOGW - 3.27 MG (~11,400 GPD)
- Misc. Sludges - 0.79 MG (~2,800 GPD)
HAULED WASTEWATER FACILITY LAYOUT

- Headworks Building
- Lime Silo
- Septage Valve Vault
- Grinder & Grease Unloading Connection
- Septage Receiving Pads
- Kiosk
- Chemical Building for MgOH
- Grease Digester
- Grease Digester Control Building
HAULED WASTEWATER OVERVIEW
FOGW PRETREATMENT TANK

- MAG HYDROXIDE FEED
- VENTURI AERATION DRAFT TUBE
- FOAM SUPPRESSION
- BACTERIA FEED
- CHOPPER PUMPS (2)
- FOG FEED
- MIXING NOZZLES (BELOW)
FOGW UNLOADING STATION DETAILS
Immediate & Dramatic Results throughout WWTP
- Within a few weeks grease buildup throughout the WWTP was gone.
- Within a few months grease “specks” in biosolids cake disappeared.

Change in delivery philosophy
- Requested concentrated and if possible dedicated grease trap loads.
- “Adjusted” rates to enhance cooperation
• No Digestion in Reactor but, pretreatment & transformation into a non-sticking, high FOG, high VFA, MLSS

• FOGW MLSS discharged into headworks with Plant Influent for Screening & Grit Removal

• Settles out as Primary Sludge
 • Now “CoDigestion”
• Anaerobic digester feed stock
 • High Volatiles
 • Very good alkalinity
• Impact of Biogas Production
 • Because of all the variables involved in the digestion of sludge and the subsequent generation of methane, it is very difficult, to establish a quantitative relationship between the amount of grease wastes received and the volume of methane produce, but clearly a relationship exists.
CO-DIGESTION BIOGAS PRODUCTION

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>GAS PRODUCED (Ft³ / Lb Digested)</th>
<th>METHANE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fats</td>
<td>20 – 25</td>
<td>62-72</td>
</tr>
<tr>
<td>Scum</td>
<td>15 – 17</td>
<td>70 -75</td>
</tr>
<tr>
<td>Grease</td>
<td>18</td>
<td>68</td>
</tr>
<tr>
<td>Crude Fiber</td>
<td>13 – 14</td>
<td>45 – 50</td>
</tr>
<tr>
<td>Protein</td>
<td>11 – 12</td>
<td>73</td>
</tr>
</tbody>
</table>

Reference: Buswell and Neave, 1939
IMPACT OF CODIGESTION - PRE-FOG PRETREATMENT

BIOGAS PRODUCTION vs. FOGW VOLUME ACCEPTED

SCALE AS NOTED

MONTH

BIOGAS x 10 CF

FOGW GALLONS

2003

2004

2005
IMPACT OF CODIGESTION - CURRENT FOGW PRETREATMENT

BIOGAS PRODUCTION vs. FOGW VOLUME

- BIOGAS x 10 CF
- FOG GALLONS

SCALE AS NOTED

MONTH
BIOGAS UTILIZATION BACKGROUND

- 2000 - ES Anaerobic Digester On-line
- 2003 – BioGas Utilization
 - BioGas used to produce steam and dry biosolids into Class A, EQ Product for sale
 - Some BioGas still wasted
- 2007 – Centrifuge
 - Increased cake solids (18% -> 22%) = 50% reduction in biogas use
 - Increased biogas production from grease acceptance
• 2009 – Cogen & Gas Conditioning Design & Bid
 • Award Contract ($2,200,000)
 • $500,000 PA Green Energy Works (ARRA/DOE) Grant
• 2010 - Unit start-up June
• 2011 - Unit destroyed September flood
• 2012 - Unit replaced March
BIOGAS CONDITIONING
CHP FACILITIES COGENERATION ENGINE
CHP FACILITIES - INSIDE THE ENGINE “BOX”
Heat Recovery Connections

Waste Heat Radiator
CHP FACILITIES - SYSTEM PERFORMANCE

• Electric Power (2016*)
 • 937,100 kWh Power Production
 • Approximately 16% of WWTP consumption
 • ~$72,000 savings @ $0.0768 / kWh
 [*~8 weeks downtime for major service]

• Recovered Heat (2016)
 • Waste Heat recovered to heat three buildings
 • ~18,000 gallons of #2 fuel oil saved
 • $45,000 savings (@ $2.50 / G)
FUTURE PLANS

- Cell Lysis
 - Pilot Testing
- More Food (Trucked-In)
 - Bulk Food & Off Spec Food Waste
 - PTP DAF Sludges
- Second CoGeneration Unit
 - Sufficient Gas
 - Insufficient ROI (dropping power costs - $0.059/kWH)
CONVERTING FOGW INTO BIOGAS FOR ELECTRIC POWER & HEAT

THE FINAL OBJECTIVE
DOGBERT THE GREEN CONSULTANT

YOUR COWORKERS HAVE IDENTIFIED YOU AS A SOURCE OF METHANE.

IF WE CAPTURE THIS FREE SOURCE OF ENERGY WE CAN POWER A SMALL OFFICE BUILDING.

I GIVE AND I GIVE.